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ABSTRACT:  The notion of “hierarchy” is one of the most commonly posited 

organizational principles in systems neuroscience. To this date, however, it has re-

ceived little philosophical analysis. This is unfortunate, because the general con-

cept of hierarchy ranges over two approaches with distinct empirical commit-

ments, and whose conceptual relations remain unclear. We call the first approach 

the “representational hierarchy” view, which posits that an anatomical hierarchy 
of feed-forward, feed-back, and lateral connections underlies a signal processing 

hierarchy of input-output relations. Because the representational hierarchy view 

holds that unimodal sensory representations are subsequently elaborated into more 

categorical and rule-based ones, it is committed to an increasing degree of abstrac-

tion along the hierarchy. The second view, which we call “topological hierarchy,” 
is not committed to different representational functions or degrees of abstraction at 

different levels. Topological approaches instead posit that the hierarchical level of 

a part of the brain depends on how central it is to the pattern of connections in the 

system. Based on the current evidence, we argue that three conceptual relations 

between the two approaches are possible: topological hierarchies could substanti-

ate the traditional representational hierarchy, conflict with it, or contribute to a 

plurality of approaches needed to understand the organization of the brain. By ar-

ticulating each of these possibilities, our analysis attempts to open a conceptual 

space in which further neuroscientific and philosophical reasoning about neural 

hierarchy can proceed. 
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1. Introduction 
 

Scientific concepts evolve over time.  As researchers generate 

new data and explore an increasing number of related yet subtly dif-

ferent phenomena, concepts frequently acquire novel connotations 

and expand their reference to novel properties. What is often left is a 

patchwork of multiple meanings and uses operating under the guise 

of a univocal concept. Because they result from the exploration of 

related phenomena, patchwork concepts are polysemous, i.e. they 

have multiple related meanings (as opposed to ambiguous words, 

whose distinct meanings are unrelated, cf. Sennet 2016).  Recent 

case studies in the physical and life sciences suggest that such poly-

semous patchwork concepts help researchers to describe distinct but 

related phenomena efficiently (Wilson, 2006), classify properties at 

different scales (Bursten, 2016), or integrate seemingly incompatible 

uses of a concept in theoretically fruitful ways (Novick, 2018; 

Haueis, 2018).  Scholars within this literature have primarily focused 

on patchworks as a descriptive claim about concept development 

within science, and on the positive contributions of patchwork con-

cepts to the projects researchers pursue. 

We agree on the descriptive claim that polysemous patchwork 

concepts are a pervasive feature of scientific language. We suggest, 

however, that the normative status of concepts with multiple related 

meanings is a genuinely open issue. Why should patchwork con-

cepts be developed during investigation?  We suggest that although 

patchwork concepts allow the investigation of phenomena that are 

closely related, they do not determine the exact relationship between 

them.  Thus, how any two meanings of a conceptual patchwork are 

properly related depends on the exact relationship between the phe-

nomena they describe.  The meanings may overlap if the phenomena 

they describe are identical.  Or the meanings may diverge if the phe-

nomena they describe are distinct.  Or one meaning may be an accu-

rate description of some phenomenon, while another is not.   

So, developing a patchwork concept allows for investigation of 

closely related phenomena to proceed without proscribing the rela-

tionship between them.  But there is a downside to this process – 

concepts often change “silently,” with new connotations emerging in 
the course of investigation, and without those differences explicitly 

acknowledged.  The appropriate normative attitude to patchworks 
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involves a commitment to explicitly cashing out the distinct aspects 

of the patchwork, so that the relationships between the phenomena 

they describe can be investigated empirically. 

We explore these issues by analyzing the concept of “hierarchy” 
in systems neuroscience. As we will outline, the idea that the brain is 

hierarchically organized has had a long and influential history in the 

field.  Neuroscientists have just begun to recognize, however, that 

the concept comprises multiple distinct connotations that are often 

not distinguished (Hilgetag and Goulas 2020).  We analyze (i) why 

the patchwork has developed, (ii) the different connotations it cur-

rently comprises, and (iii) the different possible relationships be-

tween connotations within the patchwork.  Our analysis thus ad-

vances both descriptive and normative aspects of the patchwork 

approach, and provides clarity on a conceptually difficult issue with-

in the neurosciences.    

Posits of hierarchical organization are practically ubiquitous in 

systems neuroscience, but we contend that the concept currently 

ranges over two broadly distinct approaches with different core 

commitments.  The first, which we call the “representational hierar-

chy” view, is extremely influential in the field.  The representational 

hierarchy view posits an anatomical hierarchy of feed-forward, feed-

back, and lateral connections which underlies a sequence of input-

output relations between brain areas.  During this process, simple, 

unimodal sensory representations are subsequently elaborated into 

categorical, multimodal, and rule-based ones.  The second, much 

newer view we call the “topological” approach, which is primarily 

based on the notion of centrality.  A brain area is at a higher hierar-

chical level if it has more widespread influence on the network of 

brain areas.  The topological approach primarily employs tools from 

graph theory and also focuses on an area’s temporal contribution to 

evolving brain dynamics. 

Although the two views are deeply intertwined in current systems 

neuroscience, we suggest that they have distinct central commit-

ments.3  The representational hierarchy view is committed to specific 
 

3 Hilgetag and Goulas (2020) distinguish four instead of two senses of hierar-

chy. Although a detailed comparison of both taxonomies is beyond the scope of 

this chapter, we think that that their definitions of hierarchy as laminar projection 

patterns and as spatial gradients of structural features shares the commitments of 

what we call the “representational approach” to hierarchy (section. 4.2, Fig. 3).  
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hypotheses about the representational roles of brain parts at distinct 

hierarchical levels.  The topological view has no such commitments.  

Establishing the distinction between the views allows us to ask about 

the relationship between them.  We consider three possibilities.  

First, the substantiation view suggests that the topological hierar-

chies provide a more detailed view of the anatomical underpinnings 

of representational hierarchies.  Second, the conflict view states that 

the topological approach is a potential replacement for the represen-

tational view.  Finally, there are several possible varieties of plural-

ism, which hold that the representational and topological approaches 

are mutually compatible depictions of distinct aspects of brain or-

ganization. 

Our discussions will be internal to the neuroscience literature, but 

we hasten to add that frameworks in cognitive science and philoso-

phy of mind often employ the representational hierarchy view.  Con-

sider debates about cognitive penetration and higher-level content, 

which implicitly presume that “lower-level” perception involves rep-
resentation of simpler perceptual features.  The question is whether 

perception can represent more abstract categories at a “higher” level 
of processing (Orlandi, 2010), and whether this is due to “top-down” 
influence from brain parts that represent concepts (Vetter & Newen, 

2014).  Or consider predictive coding models, which often cite hier-

archical representations in the brain to argue that feed-back connec-

tions deliver predictions based on higher-level generalizations to 

sensory areas (Bastos et al. 2012; Hohwy, 2013).  Each of these po-

sitions is broadly committed to the representational hierarchy view, 

and thus entails either the substantiation view or some variety of plu-

ralism.  Given that the conflict view is also possible, this cannot 

simply be assumed. 

We proceed as follows.  In section 2, we introduce the representa-

tional hierarchy approach, and in section 3 the topological approach.  

Section 4 then articulates the substantiation, conflict, and pluralist 

views.  In section 5, we consider studies of the rich club phenome-

non within the topological approach as a test case for the different 

views of the relationship.  Section 6 concludes. 

 

Similarly, we think that their definitions of hierarchy in terms of topological pro-

jection sequences and as multilevel modular networks share the commitments of 

what we call the “topological approach” (section 3., Fig. 4). 
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2. The representational approach to hierarchy 
 

The traditional – and, by far, the common – approach takes ana-

tomical connections in the cortex to reveal a hierarchical organiza-

tion in patterns of feedforward and feedback connections. The locus 

classicus of this approach is Felleman and Van Essen (1991).  Draw-

ing on histological data, they posited definitions of hierarchical 

“level” as depicted in Figure 1. 
 

 

Fig. 1. Definitions of hierarchical relationships. From Felleman and Van Essen 

(1991). 

The first row of Fig 1 shows two connection patterns that, accord-

ing to Felleman and Van Essen’s framework, count as ascending or 

feed-forward: either the connection begins in “supragranular” layers 
(layers 1–3 of cortex, left panel) and terminate in layer 4 (middle 

panel). Or it originates in both supra- and “infragranular” layers (5-

6, right panel) and terminates in layer 4 (middle panel). The second 

row of Fig. 1 shows that lateral connections begin in both supra- and 
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infragranular layers and terminate in all layers.  The third row shows 

that descending/feedback connections also begin at supra- and infra-

granular layers but terminate in all but layer 4.  This scheme can be 

used to classify different parts of the brain into hierarchical levels, 

based purely on anatomical connectivity.  A given area A is at a 

higher hierarchical level than another area B if A received only feed-

forward connections from B, and B received only feedback connec-

tions from A.  Two areas are on the same hierarchical level if (i) 

they share only lateral connections, or (ii) they have similar patterns 

of feed-forward and feedback connections to already established 

levels.  Based on this scheme, Felleman and Van Essen constructed 

a hierarchical description of the visual cortex comprising of 10 lev-

els.  The overall picture, as shown in Figure 2, has been extraordi-

narily influential, and is often taken as an exemplar for describing 

organization in the brain (Bechtel, 2008, ch. 3). 

 

 
 

Fig. 2.  The hierarchical wiring diagram of the macaque visual cortex.  From 

Felleman and Van Essen (1991). 
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While their analysis was based on anatomy, Felleman and Van 

Essen did not shy away from applying a functional and representa-

tional interpretation of their framework:   

 
The physiological properties of any given cortical neuron will, in gen-

eral, reflect many descending as well as ascending influences. Never-

theless, the cell may represent a well-defined hierarchical position in 

terms of the types of information it represents explicitly and the way in 

which that information is used.” (Felleman & Van Essen, 1991, p. 32).  
 

On this view, the hierarchical position of a brain area connotes a 

functional and representational specificity: occupying a specific 

place in the hierarchy involves representing certain types of infor-

mation and representing that information for further use elsewhere in 

the system. This approach is generally seen as a way of extending 

Hubel and Wiesel (1962), who showed how patterns of anatomical 

connectivity can combine to produce new functional representations.  

In Fig. 3, three “simple cells” (upper right) represent the orientation 

of an edge at a particular place in the visual field (small triangles and 

crosses on the left). The simple cells then forward these representa-

tions to a single “complex” cell (lower right).  The complex cell will 

then represent the orientation wherever it occurs across the receptive 

fields of the simple cells (dotted rectangle, right).   

 

 
 

Fig. 3. The hierarchical logic explaining complex receptive field properties of V1 

neurons in cat cortex.  From Hubel and Wiesel (1962). 
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Figure 3 points to principles of processing within the hierarchy – 

specific information is passed along feedforward pathways, and then 

is represented more abstractly by higher levels in the hierarchy.  The 

representational hierarchy view extends this logic to the rest of the 

visual system:  lower levels of the hierarchy (including V1, V2, and 

V3) represent extremely simple features (such as orientation, wave-

length, and displacement) at specific places in the visual field.  At 

higher levels of the hierarchy more abstract information is represent-

ed.  Within the dorsal stream for instance, MT represents general 

patterns of motion whereas V1 represents only local displacement.  

Within the ventral stream, a dedicated part of V4 represents catego-

ries of color whereas V1 represents only wavelength.  A different 

part of V4 represents complex shapes rather than V1’s representa-
tion of local orientation.  Higher-level areas such as the inferotem-

poral cortex represent objects when they belong to a category, such 

as faces or hands, despite variation in their specific lower-level fea-

ture values (Gross, Rocha-Miranda, & Bender, 1972).  Due to its 

view of functional and representational organization, Burnston 

(2016a, 2016b) has dubbed this view the “modular functional hierar-
chy” (MFH) picture of visual cortex organization. 

 

Early on, it was noted that there were serious empirical shortcom-

ings with Felleman and Van Essen’s approach.  In particular, many 
different possible attributions of hierarchical levels were compatible 

with the known data (Hilgetag, O’Neill and Young, 1996).  Still, the 

MFH view in general has had an astounding effect on the field of 

systems neuroscience and has extended well beyond the visual sys-

tem. Here is a small set of examples.  

 

First, the MFH view has intersected with computer vision to pro-

duce a picture of how categorical perception comes about.  Influen-

tial approaches by Poggio (e.g., Riesenhuber & Poggio, 1999) and 

Ullman (2007) have implemented feedforward networks that begin 

with representations of simple features and subsequently represent 

more abstract categories. Ullman’s hierarchy is based explicitly on 
representing fragments of lesser complexity at lower levels, and 

then, on the basis of these, representing the category of the object at 

a subsequent stage of processing. These feedforward approaches, 

however, are also getting increasingly replaced by recurrent deep 
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neural network architectures in computational approaches to visual 

object recognition.  

 

Second, the MFH view has been used to analyze other sensory 

systems.  The idea is that analogues to the simple features of the vis-

ual system can be found, and that these will be represented at lower 

levels of an anatomical hierarchy that works similarly to the one in 

the visual system.  Such views have been proposed for both the ol-

factory and the auditory system (Savic, Gulyas, Larsson, & Roland, 

2000; Wessinger et al., 2001).  

 

Third, the MFH view is taken to describe motor systems.  Interest-

ingly, however, in these systems the primary direction of influence 

is taken to be the reverse of sensory systems.  Abstract goal repre-

sentations are encoded at the top of the hierarchy, localized to areas 

such as the premotor cortex and the inferior parietal lobule (Grafton 

and Hamilton, 2007; for further discussion see Uithol, Burnston, & 

Haselager, 2014), and these are subsequently expanded into a repre-

sentation of the detailed object properties and motor kinematics 

needed to attain the outcome.  Grafton and Hamilton (2007) explicit-

ly analogize this to the kind of sequential representational hierarchy 

in the visual system (cf. Haggard, 2005).   

 

Finally, a hierarchy of abstraction for action control is often posit-

ed to explain the organization of the dorsolateral prefrontal cortex.  

In a classic fMRI study, Koechlin et al. (2003) had subjects perform 

a series of successively more complex actions. In the simplest case, 

subjects had to perform a motor action in response to a visual cue. In 

the harder case, the stimulus-response associations shifted, depend-

ing on a second cue. In the hardest case, the overall pattern of asso-

ciations between cues and sensorimotor associations changed de-

pending on still another cue.  The structure of this task is 

hierarchical, with sensorimotor associations nested under conditions, 

and conditions nested under episodes.  More anterior areas of the 

dlPFC were activated with increasing hierarchical nesting of the 

needed cognitive control.  Badre and D’Esposito (2010) take these 

and similar results to show that anterior areas are involved in the 

employment of abstract rules.   
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The representational hierarchy approach thus supports an overall 

view of brain function.  On this picture, unimodal and motor cortices 

each embody a representational hierarchy.  The outputs of perceptu-

al systems are brought together in “association” cortices, including 

frontal and parietal areas (Mesulam, 1998).  Multimodal information 

is processed according to rules in executive control areas such as the 

dlPFC, and motor systems implement goals via specific representa-

tions of motor kinematics.  Thus, the representational hierarchy view 

posits principles based on increasing abstraction for both unimodal 

and association cortices and for the overall functional architecture of 

the brain. In the next section, we discuss topological hierarchies, be-

fore moving on to discuss potential relationships between the two 

views. 

 

 

3. Topological approaches to hierarchy 
 

Topological approaches to hierarchy use the mathematical tools of 

graph theory to describe the brain as a network consisting of nodes 

(e.g., brain areas or individual neurons) and edges (e.g., axonal con-

nections, fiber pathways). Topological approaches are distinct from 

the representational hierarchy view because topological hierarchies 

quantitatively describe the potential influence of a given node on the 

system, rather than positing a specific type or degree of abstraction 

of the information it processes. This focus on potential influence 

makes topological approaches neutral to the representational func-

tions of given parts of the brain. After introducing the graph theoret-

ical concepts used to describe brains as hierarchical, we describe two 

ways to specify topological hierarchy and argue that neither of them 

is committed to representational functions. This neutrality prepares 

our argument that different relations between representational and 

topological approaches are possible (section 4). 

 

The representational neutrality we emphasize here intersects with, 

but is distinct from, several recent discussions in the philosophy of 

science literature, which attempt to address the relationships be-

tween network-based explanations and mechanistic explanations.  

Several authors have stressed the distinctness of these forms of ex-

planation and debated the relationship between them.  In particular, 
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those who think that topological explanations are entirely distinct 

from mechanistic ones tend to stress their abstraction (Huneman 

2010), or the fact that they describe global properties of systems, ra-

ther than local causal interactions (Kostić 2016, Rathkopf, 2018).   

 

We also rely on the abstractness of graph-theoretic explanation in 

articulating the difference between distinct conceptions of hierarchy.  

Graph-theoretical descriptions are neutral with respect to the repre-

sentational role of different hierarchical levels because they are not 

committed to a particular way of functionally typing the causal in-

teractions in the brain.  However, we do not take this itself to show 

that topological explanation is always global, or is in conflict with 

mechanistic explanation in general.  This is compatible with the ex-

planation of particular phenomena invoking local causal interactions 

as well as global organizational properties.  We take no particular 

stand on the issue here (but see Burnston 2019). 

 

The graph-theoretical notion of hierarchy is based on the concept 

of centrality (see van den Heuvel and Sporns 2013 for review and 

further references). A node is at a higher hierarchical level if it is 

more central to the overall connectivity of the network, and at a low-

er level if it is more peripheral. Centrality can be analyzed in differ-

ent ways. One notion is simply degree – a node with a large number 

of connections (measured as percentage of actual out of possible 

connections) will have a large influence in the network.  An example 

of a degree measurement is given in the left panel of figure 4 below.  

A second notion of centrality is betweenness centrality, i.e. how 

many shortest paths between any two nodes pass through the node of 

interest. Nodes with high betweenness centrality are crucial for me-

diating interactions across the entire network. Finally, the clustering 

coefficient of a node measures the degree to which the node’s con-
nections are themselves connected.  It is measured as the proportion 

of actual out of possible edges between nodes that are connected to 

the node of interest.   
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Fig. 4.  Hierarchical measurements in the topological approach (from 

Sporns & Betzel, 2016).   

 

Centrality measures can be used to describe the overall properties 

of the network as well as particular nodes, particularly in how net-

work organization is distributed amongst modules and hubs.  Nodes 

in a module are more connected amongst each other than to nodes 

outside the module (Sporns and Betzel 2016). Consequently, these 

within-module nodes will influence each other more directly than 

other nodes.  Hubs are nodes (or groups of nodes) which score high 

on one or multiple centrality measures, which are usually correlated 

(van den Heuvel and Sporns 2013).  A hub with a high clustering 

coefficient is likely to connect several modules, and thus provide in-

formation transfer across otherwise segregated subsystems (“con-
nector hubs”; Fig. 4 above). A node can also serve as a hub primari-

ly within, rather than between modules, by mostly connecting to 

other nodes in the same module (“provincial hubs”; Fig 4 above).  

The extent to which networks exhibit modularity and contain hubs 

gives a helpful characterization of their overall capacity to process 

information.  When a network contains primarily modules with a 

smaller number of hubs, it can maximize both localized information 

processing through within-module connections, and information in-

tegration across the network through hub-mediated connections 

(Sporns, 2011).   

 

 From these definitions one can already see why “influence on the 
network” is the primary notion for any topological approach to neu-
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ral hierarchies.
4
 If nodes are defined as brain areas, then activity in a 

highly central area will influence activity in many other areas, and 

thus shape the global behavior of the network.  A topological hierar-

chy description of the brain is generated by applying the aforemen-

tioned centrality measures to anatomical or functional connectivity 

data. Some of these datasets include the kind of histological data cit-

ed in the discussion of Felleman and Van Essen (e.g., the CoCoMac 

database), but have been updated to include more complete data 

about neural connections.  Functional connectivity is, basically, a 

measure of the statistical correlation in activity between brain areas 

over time (it can be measured in different ways, and we won’t go in-
to go into the details here; see Haueis 2012 for discussion).  Here we 

give some specific examples where researchers have employed the 

topological approach to hierarchy to make sense of brain organiza-

tion. 

 

An early example of the topological approach, as applied to ana-

tomical connectivity, is from da Costa and Sporns (2005), who used 

degree and clustering coefficient to study the hierarchical organiza-

tion of the macaque visual system.  Their analysis was based on how 

closely a starting brain area (a “reference node”) was connected to 
the rest of the system.  They thus analyzed each area in terms of de-

gree distance.  From a given reference node, for instance, they asked 

how many other nodes it connected to with only one synaptic con-

nection, how many at two synapses distant, etc.    They defined 

“levels” as degree measures at distinct synaptic distances, and 
showed that six areas in the visual system, predominantly in the dor-

sal stream, connect to more than half of the rest of the visual system 

at the first hierarchical level. These areas thus have the most direct 

 
4 While we focus on the influence notion of hierarchy, other network investiga-

tions employ a more compositional notion of hierarchy as well.  For instance, re-

searchers also talk of “hierarchy” if network structure is self-similar, e.g. when 

smaller modules are nested within larger modules (Hilgetag and Goulas 2020). 

While it may be interesting to analyze how such “encapsulation hierarchies” relate 
to compositional hierarchies in the mechanistic literature (Craver 2007, ch. 5), in 

the following we assume that systems neuroscientists studying encapsulation hier-

archies are usually interested in its implications for neural signaling, i.e. on how 

influential a brain part is within the network (Müller-Linow et al. 2008, Sporns 

and Betzel 2016). 



14  

 

influence on many other areas of the visual network.  Ventral stream 

areas predominantly connect to other nodes at the second and third 

hierarchical level, which means that their influence is less central.  

An exception was area V4, which is in the ventral stream, but had 

similarly high degree measures at a degree distance of one.  (We will 

discuss their analysis of clustering coefficients in section 4.) 

 

Centrality-based analyses of structural connectivity have also 

been used to study the entire brain.  For instance, Zamora-Lopéz et 

al. (2010) used degree and betweenness centrality to determine the 

distribution of hubs in the cat cortex. Their analysis revealed that 

most nodes with high betweenness centrality lie in frontal and limbic 

cortex, and only few in sensory cortices.  In addition to purely struc-

tural connectivity in cats and primates, Centrality measures have 

been applied to functional connectivity in humans.  Meunier et al. 

(2009) used degree and modularity measures to describe functional 

connectivity data recorded with fMRI during the experimental rest-

ing state. They showed that only five percent of the nodes qualify as 

hubs that connect several modules, suggesting that these areas of the 

brain are particularly central.  In particular, they showed that the ar-

eas of the “default-mode” network (DMN), which have been shown 
to be highly active during rest, are themselves both highly intercon-

nected (thus forming a module) and highly connected to the rest of 

the brain (thus forming a hub).  We discuss the DMN more thor-

oughly in subsequent sections. 5   

 

Both anatomical and functional connectivity measures are im-

portantly static – they describe the state of the brain as a constant 

within a period of time (e.g., during rest).  But network measures 

can also be used to describe dynamics.  In the temporal domain, top-

ological hierarchies posit that nodes with activity at shorter time-

scales have less influence on the network than nodes with activity at 

longer timescales.  There are two ways in which this has been meas-

 
5 Note that there are methodological issues with identifying functional hubs based on degree 

alone.  In Pearson correlation networks, degree is partially driven by the size and not only the 

amount of influence a subnetwork has. Thus, nodes in larger brain areas tend to be identified as 

hubs in because they are part of large physical entities (Power et al. 2013).  Yet some areas con-

sistently come out as hubs in functional connectivity studies using different measures, such as 

anterior and posterior cingulate gyrus of the DMN (van den Heuvel and Sporns 2013). 
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ured, one comparing temporal activity between areas in response to 

a given event, and another focusing on the oscillatory properties of 

brain areas.   

 

In a measure of the first type, Deco and Kringelbach (2017) de-

termined the integration value of a node’s activity in response to an 

event—for instance the presentation of a stimulus.  A node’s integra-
tion value is given by the number of other nodes to which it is func-

tionally connected after the event.  The higher the integration value, 

the higher is its influence on the network during the time period in 

question.  This can be extended to changes in overall functional 

states of the brain, such as the change from wakefulness to sleep, or 

the induction of a coma.  

 

Deco and Kringelbach’s computational modeling of the distribu-

tion of integration values suggests that the brain is organized into a 

graded, non-uniform hierarchy. There exists a continuum between 

nodes with a small and local influence and nodes with a large and 

global influence on the network. Only few nodes are situated at the 

top of this hierarchy, because they have large integration values and 

respond flexibly to neural events. Although Deco and Kringelbach 

do not report where these nodes are located in the brain, their model-

ing results mirror other functional connectivity studies which report 

a graded hierarchy (Margulies et al. 2016), with few hub nodes at 

the top (Meunier et al. 2009). 

 

The second way of applying the topological approach to the tem-

poral domain involves oscillatory hierarchies (Lakatos et al., 2005).  

Background activity within a brain area, often known as a local field 

potential, oscillates at characteristic frequencies.  It is a widespread 

finding that lower-frequency oscillations constrain or modulate ac-

tivity at higher frequencies and spiking behavior, either via phase 

coupling or phase-amplitude coupling (Canolty & Knight, 2010).  

Moreover, synchrony in oscillatory phase between distinct brain are-

as, especially at lower frequencies, is often posited to be a key prin-

ciple underlying neuronal communication and functional coopera-

tion, and these principles have been posited to underlie recruitment 

of task-specific networks (Canolty et al., 2010).  Intriguingly, differ-

ent oscillatory frequencies have different distributions in the brain, 
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and low-frequency oscillations are highly exhibited in hubs which 

overlap with the DMN (De Domenico, Sasai, & Arenas, 2016).  

Thus, oscillatory hierarchies are one way in which network centrali-

ty can integrate information across the brain (cf. Burnston, forth-

coming). 

 

The above examples show that researchers using a topological ap-

proach understand hierarchical position as the amount of influence a 

node has on the network, either by anatomically connecting many 

other nodes in space (centrality) or by functionally connecting them 

in time (integration value or phase synchrony). This focus on net-

work influence makes topological approaches neutral with regard to 

the representational architecture of the brain. Although many studies 

we describe in this section do interpret their results functionally, the 

assumptions from which these interpretations are derived are not 

part of the graph-theoretic measures themselves (see section 4.2 be-

low). A graph-theoretic description of a node simply characterizes 

and quantifies its relationships to other nodes. It does not determine 

what information is exchanged via these connections or how.  

 

Some researchers make this neutrality explicit: “our goal was not 

to identify unique hierarchical arrangements of brain regions, in 

terms of representational stages of streams, an approach taken in ear-

lier work” (da Costa & Sporns 2005, p. 573; “earlier work” refers to 

studies following the representational approach). Instead of deter-

mining which perceptual features are represented at each level of the 

visual representational hierarchy, da Costa and Sporns analyzed how 

each node spreads its outgoing connections throughout the network 

hierarchy, defined in terms of degree distance. Similarly, topological 

methods can detect modules in a “purely data-driven way” (Sporns 
and Betzel 2016, p. 19.3), without using prior knowledge about the 

representational function of brain systems to detect modular com-

munity boundaries. Because they are neutral about representational 

function, topological approaches are also not committed to the claim 

that more abstract representations are processed at higher “levels” of 
the hierarchy. A high-degree node can be central regardless of 

whether it spreads modality-specific or multimodal information 

throughout the network. Hubs can be detected by their centrality 
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measurements without assigning degrees of abstraction to what they 

may represent. 

 

Dynamic measurements of topological hierarchy are similarly 

neutral about representational architecture. For example: intrinsic 

ignition capability is defined by a node’s integration value, i.e. the 
degree of broadcasting information in the network, not the type of 

information a node represents (Deco and Kringelbach 2017). In sum, 

novel topological approaches to hierarchy focus on the influence and 

the spatiotemporal propagation structure of signals and are neutral 

with regard to the representational function at different levels of 

neural hierarchy. This very neutrality is what allows for the variety 

of possible relationships one might posit between the representation-

al and topological hierarchy.  We move to discuss those relation-

ships in the next section. 

 

 

 

 

4. The relationship between the representa-
tional and topological views 

 
4.1. Stage setting 

 

Neuroscientists using graph-theory are often unclear about the 

precise relationship between representational and topological ap-

proaches. Sporns (2011) sometimes seems to suggest that both ap-

proaches can be combined.  He claims that network structure in the 

brain reveals that neural function is both “integrated” and “segregat-
ed”. Segregation involves the separation of the network into distinct 

functional units, and integration involves the exchange of infor-

mation between those units. However, Sporns also writes that the 

topological hierarchy presents a challenge to the representational 

view: “Even cursory examination of structural brain connectivity re-
veals that the basic plan is incompatible with a model based on pre-

dominantly feedforward processing within a uniquely specified seri-

al hierarchy” (Sporns, 2011, p. 150).  How should we interpret these 
opposing tendencies? 
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We suggest construing the situation as follows. The concept of hi-

erarchy is currently a patchwork, consisting of two approaches to hi-

erarchical relations between brain parts. The representational ap-

proach provides researchers with particular explanatory schemas, 

which interpret hierarchical levels based on how abstract the repre-

sentations they process are, and the input-output relations between 

them.  The topological approach provides researchers with graph 

theoretical concepts like topological centrality or temporal integra-

tion to infer hierarchical levels based on a node’s influence on the 

network. It is, however, currently an open question how these differ-

ent connotations of “hierarchy” are related to one another.  

 

In the following we discuss three possible relationships. On the 

one hand the fact that network models could explain how functions 

can be differentiated and how information can flow between them 

might suggest that “presumed aspects of the sequential organization 

of brain networks can be confirmed and clarified through formal 

topological analysis” (Hilgetag and Goulas 2020, 5). We call this the 

substantiation view.  On the other hand, the high degree of interac-

tivity in networks suggests that clear hierarchical orderings in the 

processing of information may not be feasible.  If this is the case, 

then network models may offer up alternative organizing principles 

for the brain, based around the topological notion of hierarchy, 

which will displace the more traditional representational view. We 

call this the conflict view of the relationship.  Finally, a pluralist 

view would take both motivations into account and state that there 

are multiple distinct hierarchical organizations instantiated in the 

brain. Some situations may involve modeling it as a representational 

hierarchy, and some a topological one, where these neither conflict 

nor entirely overlap.  

 

In what follows, we discuss the commitments of each view of the 

relationship, and the evidential standing of those commitments.    

Importantly, we note examples of individual scientists who adopt, 

without conceptual argument, one kind of view or another.  This 

shows that scientists themselves are being guided by particular se-

mantic intuitions about the notion of hierarchy.  The analysis thus 

exposes both the current state of the concept of hierarchy and articu-
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lates the argumentative burden of different approaches to its patch-

work structure.  

 
4.2.  The substantiation view 

 

The substantiation view holds that the representational and topo-

logical approaches, despite using different methods, measure the 

same hierarchical organization in the brain, although the latter per-

haps with a more detailed understanding of connectivity.  The per-

spectives, after all, draw from overlapping datasets. The CocoMac 

database, for instance, is a database of anatomical connections based 

on histological data.  It is frequently used for analyses within the 

topological approach, but includes the data that Felleman and Van 

Essen used to model the representational hierarchy.  Two further 

motivations for the substantiation view are (i) that the modularity of 

networks can be interpreted as underlying distinct functions of the 

type posited in the classical hierarchy, and (ii) that the topological 

divisions revealed through network analysis often match functional 

divisions posited by the representational approach.  We will discuss 

these briefly in turn. 

 

First, point (i). Recall that, on the representational view, each neu-

ral system (visual, motor, frontal, etc.) exhibits significant functional 

autonomy from other systems.  Further, within each system, the dis-

tinct areas play different functional roles in performing the system’s 
overall function.  One possible way of reading the modular architec-

ture of topological hierarchies is as implementing functionally speci-

fied subsystems, whose integration then proceeds in, at least rough-

ly, the way described by the representational view.  Modules, recall, 

are characterized as parts of the network with primarily intra-module 

connections, thus supporting the notion that they are computational 

units dedicated to specific kinds of problems.  Indeed, Meunier, 

Lambiotte, & Bullmore (2010) suggest that a hierarchy of modules 

allows for each module to “specialize in sub-problems.”  Breakspear 

and Stam (2005) argue that lower levels of the topological hierarchy 

“represent specific features.”  (To be fair, both papers note that inte-
grating information from distinct modules may be a global process.)  

The conceptual possibility of topological modules underlying the 
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specific functions and interactions posited in the representational 

view is alluring to those friendly to the representational approach. 

 

The support for point (ii) is empirical.  It turns out that, in fact, 

many divisions made within the topological approach correspond to 

divisions made within the representational approach.  This is espe-

cially true for large-scale divisions (but see Zerilli, 2017).  For in-

stance, modularity analyses at the level of the whole brain reveal 

that visual cortex is more tightly interconnected than it is connected 

to other large-scale networks.  In cats and macaques visual cortex is 

much more tightly interconnected than it is connected to somatosen-

sory cortex, and vice versa (Sporns, Honey, & Kötter, 2007).  This is 

true for both structural and functional connections (Honey, Kötter, 

Breakspear, & Sporns, 2007).  Even within these parts of the cortex, 

functional divisions can be made that match the representational 

view – for instance, structural connectivity in humans shows a dis-

tinction between the dorsal and ventral streams of the visual cortex 

(Hagmann et al., 2008), which are standardly taken to perform very 

different functions in vision (Mishkin, Ungerleider, & Macko, 

1983). 

 

Moreover, areas of cortex that have traditionally been called “as-
sociation areas,” including areas in the parietal and prefrontal corti-
ces, standardly come out as hubs in graph-theoretic network anal-

yses (Sporns et al., 2007, van den Heuvel & Sporns 2013).  If their 

role is to associate (and perhaps abstract from) multiple kinds of in-

formation from unimodal cortices, then one would expect them to 

have a wide range of connections to those areas. Sporns (2011) him-

self cites approvingly the unimodal-to-association area progression 

posited by Mesulam and others (cf. Meyer & Damasio, 2009).  

Passingham, Stephan and Kötter (2002), in an influential analysis, 

proposed that areas such as premotor and frontal cortices will differ 

in the amount of different information they will respond to from sen-

sory cortices, and that these differences are due to differences in the 

patterns of connections exhibited by different areas. 

 

Researchers using resting state functional connectivity studies 

have also embraced the substantiation view. Margulies et al. (2016) 

used diffusion map embedding, a variety of dimensionality reduction 
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technique, on human resting state functional connectivity data.  This 

technique involved constructing dimensions along which connected 

areas could be grouped, with closely connected areas close together 

along each dimension.  The sum of all dimensions forms a so-called 

embedding space, which positions nodes according to the similarity 

of their functional connectivity profiles. In Fig. 5. Margulies et al. 

use two of these dimensions to describe the greatest and second 

greatest amount of variance in functional connectivity between are-

as, which they call the first and second gradient of connectivity.  

 

 

Fig. 5. The Mesulam model (left) and the Margulies model (right) of the cortical 

abstraction hierarchy. Adapted from Margulies et al. (2016).    

Fig. 5 shows that Margulies et al. interpret the two gradients of 

functional connectivity as revealing a hierarchical gradient of ab-

straction which runs from primary sensory areas to regions of the 

default mode network (DMN). According to this interpretation, de-

fault mode regions are involved in cognitive functions such semantic 

memory or reward-guided decision making because default mode 

activity processes abstract informational content, largely independ-

ent of transient environmental stimuli processed by sensory systems.  

This interpretation substantiates Mesulam’s representational hier-

archy model (see section 2) because it situates the DMN at the top of 

a known representational hierarchy that proceeds from unimodal 

sensory to transmodal association areas. Note, however, that this 

substantiation interpretation is not necessary to apply the diffusion 

map embedding algorithm to resting state fMRI data. This procedure 

places nodes closer in embedding space if they are more strongly 

functionally connected, or as we put it, if they influence each other 
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more strongly than other nodes. Additional assumptions about func-

tional connectivity directly reflecting information processing 

(Schölvinck et al. 2013) and topographical structure constraining 

cognitive processes are required (Margulies et al. 2016). To arrive at 

the substantiation view, these assumptions need to be combined with 

the supposition that the representational approach is a correct ap-

proximation of the brain’s hierarchical organization. 
 

4.3.  The conflict view 

 

There are two primary motivations for the conflict view: (i) 

graph-theoretical results that conflict with the representational hier-

archy; and (ii) independent evidence that speaks against the repre-

sentational but not the topological approach. We take these motiva-

tions in turn. 

There are individual cases in which the consistency between topo-

logical and representational approaches to hierarchy breaks down.  

Let us consider one case – V4 – in detail.  V4 is, according to the 

representational approach, a “mid-level” visual area (level 5 of 

Felleman and Van Essen’s hierarchy), which comprises two sub-

areas in charge of representing color and complex shape.  This clear 

place in the representational hierarchy is questioned by graph theo-

retic analyses of anatomical connectivity, which reveal that V4 

scores extremely highly in measures of degree and centrality.  This 

is shown in figure 6 below. 
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Fig. 6.  Centrality measurements of V4.  From Sporns (2011). 

 

Fig. 6 shows that V4 scores very highly, relative to the whole-

brain network, on degree and betweenness centrality.  It also ranks 

high on closeness centrality, which is a related measure of the aver-

age path length between the node and all other nodes in the network 

(shown in the inverse here for comparative ranking).  V4 also has 

connections to other high centrality nodes, such as area 46 in the 

frontal cortex.  Similarly, nodes that are directly connected with V4 

(da Costa and Sporns’ hierarchical level 1), have a low clustering 

coefficient, but nodes that are connected to those nodes (da Costa 

and Sporns’ hierarchical level 2) have a very high clustering coeffi-

cient.  This suggests that V4 connects, with a small number of syn-

aptic steps, to multiple modular areas (da Costa & Sporns 2005).  

For areas in the dorsal stream such as MT and MST, by contrast, 

clustering is greater at nodes only one edge away.  The way to inter-

pret this is that most connections for dorsal stream areas are intra-

modular, whereas connections for V4 are widely spread across mod-
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ules.  Thus, V4 is potentially a more integrative area than areas that 

are traditionally posited to be at the same or higher levels of the rep-

resentational hierarchy. 

 

This result suggests that, in terms of topological centrality, V4 is 

at the highest levels of the overall brain hierarchy, in extreme con-

tradistinction to the low level posited for it in the representational 

hierarchy.  Hence, there is a direct conflict between the results with-

in the two different perspectives. Does the centrality of V4 make a 

functional difference?  As Sporns notes, hubs are well-situated to 

play multiple diverse functional roles, and this is in fact borne out by 

the data – V4 has a much more complex functional profile than the 

representational hierarchy posits (Burnston, 2016b; Roe et al., 

2012), and lesions to V4 cause a diverse range of effects (Schiller, 

1993).  This puts pressure on the representational view in two ways.  

First, V4 may not have a well-defined place in a representational hi-

erarchy, such that it sends a specific signal onwards to subsequent 

areas of the hierarchy.  Second, it pressures the idea that sensory 

representational occurs first, prior to the integration of multimodal 

information by association areas.   

 

The second motivation for the conflict view is independent ana-

tomical and physiological data that conflict with the functional pos-

its of the representational hierarchy.  We can only summarize this 

data here, but it will suffice to get the picture across.  First, both di-

rect and subcortically mediated connections exist between primary 

sensory cortices in different modalities, and these are posited to un-

derlie a variety of cross-modal effects (Driver & Spence, 2000, Gha-

zanfar and Schroeder 2006).  Second, the representational approach 

suggests a preferred pathway for signals in sensory cortices, such 

that information is represented first at lower levels, then only subse-

quently at higher levels (Lamme & Roelfsema, 2000). However, 

both anatomical and time course data question the existence of such 

a pathway. Parts of V4 have both bidirectional and direct connec-

tions to higher visual areas which bypass the putative central ventral 

pathway, “violating a strict serial hierarchy at even the earliest stag-

es of visual processing” (Kravitz et al. 2013). Temporal data show 

V4 in fact is slower to represent information than areas traditionally 

seen as “above” it in the hierarchy such as MST and the FEF, 
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whereas MT is roughly tied with these areas in terms of response la-

tency. This result is summarized in Fig. 7 below.   

 

 
 

Fig. 7. Time-from-stimulus onset measurements for physiological activation of 

visual cortical areas. From Capalbo et al. (2008). “Level” refers to hierar-

chical level, in the sense of Felleman and Van Essen (1991), except Capal-

bo et al begin counting from the LGN, rather than V1.  Hence, e.g., MT 

and V4 are labelled as “level 6” here, but they are level 5 in Felleman and 
Van Essen. 

Third, physiological results question the idea that increasingly ab-

stract representation occurs at higher levels.  Hedge and Van Essen 

(2007) measured physiological responses in V1, V2, and V4 to a 

wide range of shapes. Examples are shown in Fig. 8 below.   
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Fig. 8.  Shapes of increasing complexity.  From Hegde and Van Essen (2007). 

According to the representational hierarchy, more complex shapes 

should be represented in higher areas of the hierarchy – in this ex-

ample, simple sinusoidal gratings should be represented at V1 and 

V2, while increasingly complex hyperbolic and polar/radial shapes 

should be represented at V4.  But this is not what Hegde and Van 

Essen found.  Instead, they showed that different populations of cells 

in each area had greater responses to shapes across the categories, 

without one type of shape being privileged at any area.  Strikingly, 

the authors – including Van Essen, one of the key progenitors of the 

representational hierarchy view – argue that their data undermines 

any strict division between what is represented at distinct representa-

tional stages in the visual cortex. 

 

These results generalize both to relationships “higher up” in the 
purported processing hierarchy, and to the motor domain.  For in-

stance, Meyers et al. (2008) compared how much category infor-

mation about a stimulus is extractable from populations in the in-

ferotemporal and prefrontal cortices.  There was no difference in the 

degree of abstraction of information that can be discerned from these 

populations (using decoding methods).  What differed is what in-

formation co-existed with abstract category information in each 

population.  IT tended to retain more visual detail, whereas PFC 

tended to combine stimulus category information with task varia-

bles.  Similarly, Murray et al. (2017) modeled the circuit between 

prefrontal and posterior parietal cortex involved in working memory.  

They showed that the difference between the PFC and PPC is not 

how abstractly they represent information, but instead in terms of 

whether they also represent distractors – PPC does whereas PFC 
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does not.  These results suggest that areas at different levels of the 

traditional hierarchy are not distinguished by how abstractly they 

represent information, but in terms of how they represent different 

combinations of information that are relevant for a task. 

 As a final example, consider the notion of rule-representation 

in the frontal cortex.  Rules are often construed as related to either 

conditional stimulus-response associations or as generalizations of 

those associations.  So, in a same-different task, one might have neu-

rons that respond both to the stimulus and to its repetition, or one 

might have cells that signal when the task is a same-different task, 

regardless of the stimulus.  The latter is generally construed as more 

abstract, but cells with significant responses for rule do not distribute 

hierarchically in the cortex.  In fact, rule selectivity has been shown 

to occur more strongly and earlier in a task in the premotor cortex 

than the prefrontal cortex (Wallis & Miller, 2003).  Moreover, there 

are not individual areas that represent rules at the expense of stimuli 

– in fact, the much more common finding is that cells even in areas 

traditionally construed as higher-level exhibit mixed selectivity, with 

responses mediated by combinations of stimulus, response, and rule 

(for review, see Rigotti et al., 2013).  

 

In general, the results here, along with the results in visual cortex 

discussed above, do not support the notion of a clear hierarchy of 

representational abstraction either in visual or “association areas” – 

instead, what differentiates areas is how they combine different in-

formation in different ways.   

 

One worry about the conflict view is that because topological ap-

proaches are neutral with regard to representational architecture, 

there is no inherent reason to align them with independent evidence 

against the plausibility of the representational view. The fact that 

topological approaches are compatible with that evidence does not 

entail that they positively supports that evidence. Our reply is that at 

least in some cases, graph-theoretical analyses do support evidence 

against the representational view, despite their neutrality towards 

representational function. Consider, for instance Goulas et al. 

(2014), who tested predictions about anatomical connectivity en-

tailed by the anterior-posterior gradient of abstraction in the prefron-

tal cortex. They reasoned that, if more anterior areas of the prefron-
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tal cortex were in charge of more abstract control functions, then 

they should send more efferent connections to areas lower in the 

purported hierarchy than they receive.  Goulas et al. (2014) could 

not confirm this prediction of the abstraction gradient model, how-

ever.  More posterior prefrontal regions, Brodmann areas 45 and 46, 

consistently sent more efferent connections than the most anterior 

region, area 10. Therefore, the anatomical connectivity of these re-

gions conflicts with the anterior-posterior model.   

 

We have shown that, despite the consistencies between the repre-

sentational and topological approaches, there is also data that the 

topological approach can accommodate, that the representational 

one cannot, or at least not easily.  Hence, the two views are empiri-

cally distinguishable.  If one finds the data reviewed in this section 

compelling, one is likely to adopt the conflict view and suggest dis-

placement of the representational approach by the topological one.   

 
4.4. The pluralist view 

 

Both the substantiation and the conflict view seek to resolve the 

patchwork structure in favor of a univocal meaning of the concept of 

“hierarchy”, referring to a distinctive organizational property.  Sub-

stantiation implies that distinct hierarchical levels must always cor-

respond to degrees of representational abstraction, and are individu-

ated in terms of representational function.  Conflict implies that 

hierarchical distinctions are always specified in terms of amount of 

influence, and are individuated with no representational commit-

ments.   

 

One might reasonably suspect, however, that any attempt to build 

a universal conceptual structure of “hierarchy” is mistaken, given 
the piecemeal data upon which the substantiation and conflict views 

are founded. Instead, one could propose a pluralist view about the 

relation between representational and topological approaches: they 

represent multiple, equally legitimate meanings of “hierarchy” in 
neuroscience which overlap in some domains and diverge in others.  

Pluralism suggests that both representational hierarchy and topologi-

cal approaches, while having distinct constitutive commitments, are 

explanatorily important for understanding neural organization.  Plu-



29 

 

ralists hold that the extant patchwork structure of scientific concepts 

is epistemically useful and—to a certain extent—reflects the struc-

ture of the underlying phenomena (Wilson 2006, Bursten 2016, 

Novick 2018, Haueis 2018). Below we highlight three pluralist op-

tions and discuss their advantages and drawbacks. 

 

The first option is that there are different processes in the brain 

which will be best explained by the representational and topological 

approaches.  On this view, there is a large amount that is correct to 

the representational approach – the basically serial and abstractive 

nature of processing, for instance – but this process breaks down at 

some point and gives way to a different form of organization that re-

lies more on global interactivity.  This form of pluralism is suggest-

ed by some of the comments from theorists discussed in section 4.1.  

The basic problem with this form of pluralism is that it does little to 

answer any of the data that speaks against the representational hier-

archy, since it basically accepts the traditional picture and views the 

topological hierarchy as a kind of integrative add-on. 

 

The second form of pluralism is a modelling-based pluralism, 

which treats the representational and topological approaches as ways 

of representing the brain.  On this view, both the representational 

and topological approaches can be seen as strategies for understand-

ing neural organization, where the reason for adopting one over an-

other depends on the explanandum.  Network representations can be 

used to think about, for instance, efficiency of communication given 

constraints such as minimizing wiring length (Meunier et al., 2010; 

van den Heuvel & Sporns, 2011).  This might be contrasted with the 

representational hierarchy, which is meant to explain how signals 

are in fact processed in the brain.  While this view has some ad-

vantages, and connects up with larger debates about the role of dif-

ferent forms of models in explanation in biology (Green et al., 

2017), an explanation will have to be given about the situations in 

which these models conflict, such as in the case of V4 discussed 

above. 

 

The other way to accommodate conflicting data is organizational 

pluralism, which suggests that the brain can in fact instantiate many 

different forms of organization, and that the representational hierar-
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chy is one but not the only one.  For instance, in many studies that 

inspire the representational approach, animals are studied in very 

limited behavioral circumstances, having to make specific perceptu-

al judgments on the basis of presented stimuli (in the perceptual 

case), or having a well-defined task set that they must learn (in the 

prefrontal case).  Perhaps, however, perception in the context of ac-

tion requires more dynamic interaction with wider brain networks, 

or action in the case of deliberation requires broader access to, e.g., 

motivational and evaluative influences.  On this view, there is a sim-

ple hierarchical organization for simple behavioral contexts, but this 

organization might be replaced by more complicated forms of signal 

representational, which might also be mediated by the topological 

hierarchy (cf.  Chemero & Silberstein, 2013). 

 

We think the last view is in many ways the most promising, alt-

hough not without limitations. One advantage of organizational plu-

ralism is that it comports with a wide range of data suggesting that 

the network organization of the brain is not constant (Honey et al., 

2007).  When analyzing functional connectivity, different nodes at-

tain different degrees of centrality in different contexts, and different 

networks are enlisted that are relevant to the task (Burnston, 2019; 

Stanley, Gessel, & de Brigard, 2019).  Organizational pluralism ac-

counts for this possibility while making room for the traditional rep-

resentational picture as one kind of organization that the network 

can adopt. Another advantage is that organizational pluralism can in 

principle account for both the data in favor of, and the data against, 

the representational hierarchy view. If the organization of the brain 

changes dynamically, then in some cases it might instantiate a repre-

sentational hierarchy, while in some cases it may not – hence the 

traditional data in favor of, as well as the newer data against, the rep-

resentational view. 

 

The main worry about this last view is that it may be too permis-

sive.  For instance, the latency data from Capalbo et al., as well as 

the physiological data from Hegde and Van Essen, seem to cause 

problems for the representational view even in the kind of contexts 

for which it was originally proposed. Organizational pluralists must 

be able to account for data in the same contexts via proposed chang-

es in organization. 
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In sum, we suggest that the substantiation, conflict and pluralist 

views are all both independently motivated (to some degree) and at 

work in the current literature.    Given that they are all distinct 

views, however, they need to be articulated, and their commitments 

understood, in order for conceptual progress to be made.  We have 

offered a preliminary version of such a framework above.  In the 

next section, we showcase the utility of this framework by applying 

it to recent research on brain dynamics and rich club topology. 

  

 

5. A test case:  rich club organization 
 

As research into brain networks has progressed, attention has 

turned heavily towards brain dynamics, and how they are shaped by 

network features, including hierarchical centrality.  Earlier, we dis-

cussed how the hub-and-module organization of the brain is often 

seen as a way of implementing the balance between segregation and 

integration of function.  A dynamical corollary to this view is that 

highly central nodes allow for a balance of diffusion and efficiency – 

diffusion means that information can be broadcast widely in the 

network, while efficiency means that it can be routed to where it is 

needed (Avena-Koenigsberger, Misic, & Sporns, 2017).  Whole-

brain dynamics shift between rest and task, and between tasks (Shine 

& Poldrack, 2017), and are mediated by widespread oscillatory syn-

chronization (Deco & Kringelbach, 2016).   

In this section, we briefly discuss the role of the “rich-club” archi-
tecture in the brain for mediating dynamics. A network contains a 

rich club if its highest-degree nodes are also highly connected to 

each other. A rich club measurement begins with a degree threshold, 

k, and then asks what proportion of possible connections between 

nodes with degree > k obtains in the network.  Rich club architec-

tures occur in many networks, including the human brain.  Simula-

tions have shown that brain networks with a rich-club architecture 

have a greater range of dynamic attractors than networks without 

one (Senden, et al., 2014).   

 

Rich-club architecture provides an interesting test case for the dif-

ferent positions relating representational and topological hierarchies.  
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First, rich club areas are at the highest levels of network-based cen-

trality, judged by degree and influence on cortical dynamics.  It also 

operates at particularly slow oscillatory frequencies (Senden et al. 

2017a), placing it at a higher level of the oscillatory hierarchy.  Fi-

nally, the rich club also significantly overlaps with the DMN which, 

as we saw above, is posited within the substantiation view to be 

transmodal network with the highest degree of abstraction in the 

brain (Margulies et al. 2016).  So, the rich club is a particularly rich 

network structure with which to analyze concepts of hierarchy.   

 

The representational hierarchy view posits that the rich club 

should be involved in processing abstract representations.  However, 

an alternative hypothesis has emerged from within the network liter-

ature.  Senden et al. (2017b) studied functional connectivity between 

the rich club and other brain areas as subjects switched between rest 

and four different kinds of tasks, including working memory (n-

back), response inhibition, mental rotation, and verbal reasoning.  

They showed, intriguingly, that during rest the rich club network had 

greater in-degree, meaning it received more input from other brain 

areas, but that this switched during tasks, with the rich club provid-

ing more output than receiving input. Moreover, rich club outputs 

targeted a similar set of brain areas across tasks, but the network re-

lationship between these target areas, as well as which brain areas 

they interacted with, changed depending on the task.   

 

The hypothesis constructed by Senden et al. is that the rich club 

serves as a gate that mediates competition between networks else-

where in the brain that mediate the specific tasks. Note that, as befit-

ting the different core commitments of the topological view, the gat-

ing hypothesis contains no commitments about whether the rich club 

does this by conveying abstract representations about task context to 

the rest of the network, or even whether it represents anything at all. 

Hence, all of the positions with regards to the relationship between 

the two views of hierarchy are on the table.  We will not attempt to 

adjudicate which is correct here, but we will close by listing the ex-

planatory obligations that each view of the relationship takes on. 

 

The substantiation view suggests that the rich club’s influence on 
the rest of the network is dependent on the rich club processing par-
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ticularly abstract representations.  A proponent of the substantiation 

view must then define what those representations are, how they are 

propagated to the non-rich-club nodes that receive input from the 

rich club, and how these are used to guide behavior.  A proponent of 

the conflict view must argue that the competition-process is mediat-

ed primarily by the slow-oscillation and conflicting inputs about task 

settings coming into the rich club, and that no abstract representa-

tions are required to subsequently re-organize its output targets in 

the appropriate configuration for the task. 

 

Each variety of pluralist view is also possible.  Process pluralists 

would suggest that input about the task settings, and perhaps motor 

actions involved in implementing particular tasks, follow a represen-

tational hierarchy, but that coordinating the different subnetworks is 

itself a topological, and not a representational hierarchy-based, pro-

cess.  Model-based pluralism will suggest that the roles of the rich 

club in mediating diffuse yet efficient communication, as well as 

providing robust communication (van den Heuvel & Sporns, 2011) 

are best described from the topological perspective, but that this is 

compatible with abstract representations being what is communicat-

ed diffusely and efficiently.  Finally, organizational pluralism states 

that rich club organization, which is topological, co-exists with rep-

resentational hierarchies in the brain, perhaps explaining why in-

degree is significantly higher to the rich-club between tasks, but out-

degree higher when task-related representations are occurring. 

 

Each of these views in turn takes on commitments, particularly 

with regards to how the other areas with connections to the rich club 

operate.  The point is that none of these moves is trivial, and hence 

whatever position one takes requires extensive justification.  So, our 

approach to the patchwork concept helps clarify the state of the hier-

archy concept with regards to extant research strategies and the 

available empirical data. 
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6.  Conclusion 

In this paper we have argued that there are two distinct approach-

es to the concept of hierarchy in neuroscience, whose relations have 

not been sufficiently scrutinized in the previous literature. While the 

representational approach takes progressively more abstract infor-

mation processing and representational function as the core property 

which sorts anatomical areas hierarchically (section 2), topological 

approaches take influence on the network and propagation structure 

to be central and are neutral with regard to abstraction and represen-

tational function (section 3).  

Our analysis of these two approaches supports the descriptive 

claim that many scientific concepts develop into a patchwork when 

researchers use them to pursue various descriptive and explanatory 

projects (Wilson, 2006; Bursten 2016; Novick, 2018; Haueis, 2018). 

Our central contribution is the point that such conceptual patchworks 

leave researchers with multiple options of how to relate different us-

es of a concept to each other. We argued that current evidence sug-

gests three possible conceptual relations between the two approaches 

to “hierarchy” (section 4): topological hierarchies could substantiate 

the traditional representational hierarchy, conflict with it, or contrib-

ute to a plurality of approaches needed to understand the hierar-

chical organization of the brain. We do not wish to argue which of 

these relations is the correct one.  We take the foregoing to have 

shown, however, that the conceptual landscape surrounding the no-

tion of “hierarchy” in systems neuroscience is extremely complicat-

ed.  Without explicating its different connotations and their relations, 

“use of the term ‘hierarchy’ can become meaningless, or worse, mis-
leading” (Hilgetag and Goulas 2020, 8). There are no obvious an-

swers, and there is especially no justification to presuming one view 

of the relationships between different notions of hierarchy over an-

other.   

 

Because hierarchical thinking is deeply engrained in neuroscience 

and is also used to defend computational (Pylyshyn, 2007) and evo-

lutionary (Barrett, 2014) accounts of the mind, theorizing about rela-

tionship between the representational and topological views is of no 

small consequence for cognitive science. A substantiation view al-

lows for standard conceptions of the general architecture of the brain 
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and mind to be kept in place, with perhaps some network concepts 

used to fill in details or account for information integration in a more 

perspicuous way.  The conflict view, however, promotes – and we 

want to stress this – a radical revision to our general conception of 

neural and mental organization, for which there are not well-

articulated alternatives. Thinking about the representational and 

functional organization of the brain if the conflict view is true is a 

major conceptual project. Finally, if one pursues a pluralist option 

then examining the nature of the interaction between different no-

tions of hierarchy will generate insight about functional architecture 

and the roles of distinct concepts in neuroscience. By articulating 

different possibilities of answering that question, we hope to have 

opened up a conceptual space in which further neuroscientific and 

philosophical reasoning about neural hierarchy can proceed. 
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