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Abstract

We examine the mechanisms required to handle everyday activities from the standpoint of cognitive
robotics, distinguishing activities on the basis of complexity and transparency. Task complexity (simple
or complex) reflects the intrinsic nature of a task, while task transparency (easy or difficult) reflects
an agent’s ability to identify a solution strategy in a given task. We show how the CRAM cognitive
architecture allows a robot to carry out simple and complex activities such as laying a table for a meal
and loading a dishwasher afterward. It achieves this by using generalized action plans that exploit
reasoning with modular, composable knowledge chunks representing general knowledge to transform
underdetermined everyday action requests into motion plans that successfully accomplish the required
task. Noting that CRAM does not yet have the ability to deal with difficult activities, we leverage
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insights from the situation model perspective on the cognitive mechanisms underlying flexible context-
sensitive behavior with a view to extending CRAM to overcome this deficit.

Keywords: Cognitive architecture; Cognitive robotics; Everyday activity; Situation model

1. Everyday activities: Simple and complex

Everyday activities are carried out routinely by humans. They often seem simple and
straightforward when, in fact, they can be complex and demanding, at least at first. Let us
consider why this is so. To begin with, some activities are inherently simple. They can be
executed without much thought because it is easy to see what needs to be done and how: even
if there are several steps in an activity, the relationship between these steps is limited, for
example, with one step following another in a well-defined order, and with each step having
little or no variety in the way it is carried out. These activities require little or no deliberation.
Stacking plates on a shelf is an example because it involves repeatedly picking up plates and
putting them down somewhere else. There is little room for variety or creativity. In contrast,
filling a dishwasher with cups, saucers, plates, and cutlery is a complex task because doing it
well requires objects to be selected and placed in appropriate positions so that they would not
shield other objects, preventing water from reaching them. The dishwasher also needs to be
filled compactly, and there are many different strategies one can apply to achieve this. How-
ever, with most tasks that initially are difficult for us, our experience is that with practice, the
task gets easier and easier, and we may arrive at a point where we can perform the initially
difficult task more or less habitually and with very little effort.

This leads us to distinguish between the complexity of a task versus its difficulty for a
particular agent.

A task can be taken to have low complexity (i.e., it is simple) when it admits a solution that
can be described as a short action pattern (“program”). For instance, stacking many plates
can be formulated with a very compact action pattern and thus is simple, even if the sheer
number of required action steps may be large. This intuitive characterization of complexity
as a task-inherent property has received its rigorous mathematical foundation in Kolmogorov
complexity theory (e.g., Li & Vitanyi, 2008). It is not without subtleties. For instance, for
an interactive robot, the “program’” must be able to run within real-time bounds and include
all prerequisites (e.g., feedback or even prospection mechanisms) that will be needed to cope
with the potential variability of task instances. As a result, complexity depends on what con-
straints apply on the possible combination of steps involved in the task and the number of
degrees of freedom in each step.

But low complexity (in the sense defined above) of a task does not always imply that it is
also easy for a particular agent. We all remember tasks that we first experienced as very diffi-
cult but after some effort we managed to discover a short, perhaps even elegant, way of solving
them. Such examples expose task difficulty as a property that is—unlike complexity—not a
feature of the task itself, but instead measures how far the agent still struggles with unneces-
sary effort that would not be required, according to the true and intrinsic complexity of the
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Fig. 1. Tasks can be characterized by their transparency and their complexity. Task transparency reflects the relative
difficulty depending on the agent involved, its experience, and therefore its ability to easily identify a solution
strategy or not. Task complexity reflects the intrinsic nature of task and depends on what constraints apply on the
possible combination of steps involved in the task and the number of degrees of freedom in each step.

task. Thus, task difficulty captures the degree to which the solution strategy is “transparent”
(i.e., clearly evident or not clearly evident) to the cognitive agent. We also see that while com-
plexity is a static property of the task, its difficulty may change when the agent is adaptive
and has occasion to become, through repeated trials, familiar with a task. To emphasize this
distinction between “complexity” and “difficulty,” we will in the following use the terms fask
complexity and task transparency, respectively.

These two dimensions can vary independently, giving rise to four different “quadrants” that
classify situations within which a cognitive agent needs to operate (see Fig. 1).

Each quadrant thus may require an agent cognitive architecture to recruit different mech-
anisms, with some tasks being accomplished in a habitual manner and other tasks requiring
more deliberation. For instance, in the lower left quadrant, the agent may need to deliberate
even for a simple task (for instance, when the task is novel and the agent fails to see a solution
in terms of habitual behaviors that are already at its disposal). However, with repeated routine
execution, such tasks can be carried out with habitual behavior, moving them into the upper
left quadrant. Similarly, under the right conditions, some complex tasks, too, can be carried
out with habitual behaviors, moving them from lower right to upper right. We address these
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conditions in Section 4. Note also that some everyday activities—simple or complex—that
have become amenable to habitual execution can also on occasion require the recruitment of
the mechanisms responsible for deliberative behavior, for example, in cases where the action
fails or when something unexpected happens.

In the following, we describe the results of a research program to develop a cogni-
tive architecture that allows a robot to successfully carry out easy simple and complex
everyday activities and we discuss future plans to address difficult everyday activities.
Research in cognitive robotics can contribute to the broader agenda of cognitive science by
proposing information processing models, implementing them as robot control programs, and
assessing their ability to perform everyday activities. Such research provides insights and let
us test whether particular information processing principles and combinations of informa-
tion processing components are sufficient for accomplishing concrete subclasses of everyday
activity. Often, the information processing models used in cognitive robotics are informed
through cognitive models of human or animal agency, which further increases the synergies
between the fields.

An example of this line of research is presented by Kazhoyan and Beetz (2019a) who have
designed and realized a robot control system that uses a single generalized action plan for
fetching and placing objects. This robot control system has been demonstrated to be suffi-
cient for accomplishing subsets of human-scale everyday manipulation tasks such as setting
the table, cleaning up, and loading the dishwasher. Fig. 2 shows how one of the high-level
actions (fetch some object) is translated into different low-level body motions (such as grasp-
ing) depending on the object, task, and context so that the action is performed successfully.
The approach we describe is of interest for its generality and how the generality is realized:
the cognitive architecture enables a robot agent to manipulate different kinds of objects, in
different configurations of the environment, replacing the limbs, sensors, and actuators of the
robot with different ones, when required.

In the next section, we continue with an overview of cognitive architectures, in general, and
the CRAM robot cognitive architecture (Beetz, Mosenlechner, & Tenorth, 2010), in particu-
lar, and we show how a robot controlled by CRAM can accomplish easy simple and complex
everyday activities such as setting a table for a meal and tidying up afterward. We also explain
the limitations of CRAM at present and identify the need for more flexible cognitive behavior
to deal with difficult tasks. We then provide a short overview of the situation model frame-
work (Schneider, Albert, & Ritter, 2020) as a basis for achieving the flexible context-sensitive
cognitive behavior required for difficult tasks and briefly discuss the implications of using it
to extend CRAM in the future.

2. The CRAM cognitive architecture
2.1. Three types of cognitive architecture

The concept of a cognitive architecture is due to Allen Newell who made several land-
mark contributions to cognitive science and artificial intelligence, including the development
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Fig. 2. A high-level action to fetch some object is translated to different low-level body motions, depending on
the object, task, and context. The examples in this figure show the different grasps that are selected by the CRAM
cognitive architecture when executing a fetch action with various objects. These examples are documented in a
short video; see footnote.

of the Soar cognitive architecture for general intelligence (Laird, Newell, & Rosenbloom,
1987) and the concept of a unified theory of cognition (Newell, 1990). A cognitive architec-
ture is a computational framework that integrates all the elements required for a system to
exhibit the attributes that are considered to be characteristic of a cognitive agent. A cognitive
architecture determines the overall structure and organization of a cognitive system, including
the component parts or modules (Sun, 2004), the relations between these modules, and the
essential algorithmic and representational details within them (Langley, 2006). The architec-
ture specifies the formalisms for knowledge representations and the types of memories used
to store them, the processes that act upon that knowledge, and the learning mechanisms that
acquire it.

Existing cognitive architectures may be classified as three different types: the cognitivist,
the emergent, and the hybrid. Cognitivist cognitive architectures, often referred to as symbolic
cognitive architectures (Kotseruba & Tsotsos, 2020), focus on the aspects of cognition that
are relatively constant over time and that are independent of the task (Langley, Laird, &
Rogers, 2009; Ritter & Young, 2001), with knowledge providing the task-specific element.
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The combination of a cognitive architecture and a particular knowledge set is often referred
to as a cognitive model.

Emergent approaches to cognition focus on the development of the agent from a primitive
state to a fully cognitive state over its lifetime. As such, an emergent cognitive architec-
ture is both the initial state from which an agent subsequently develops and the encapsula-
tion of the dynamics that drive the development, often exploiting subsymbolic processes and
representations.

Hybrid architectures endeavor to combine the strengths of the cognitivist and emergent
approaches. Most hybrid architectures focus on integrating symbolic and subsymbolic pro-
cessing. Hybrid cognitive architectures are the most prevalent type: 48 of the 84 cognitive
architectures surveyed by Kotseruba and Tsotsos (2020) are hybrid.

The majority of cognitive architectures focus on modeling human cognition. Some cog-
nitive architectures are also a candidate unified theory of cognition. The cognitive architec-
tures Soar (Laird, 2012; Laird et al., 1987), ACT-R (Anderson, 1996; Anderson et al., 2004),
CLARION (Sun, 2007, 2016, 2017), and LIDA (Franklin, Madl, D’Mello, & Snaider, 2014;
Ramamurthy, Baars, D’Mello, & Franklin, 2006) are archetypal candidate unified theories of
cognition, all of which are classified as hybrid in the survey by Kotseruba and Tsotsos (2020).

In the following, we consider an alternative hybrid cognitive architecture, CRAM (Beetz
et al., 2010; Beetz, Tenorth, & Winkler, 2015; Kunze & Beetz, 2017), to illustrate how cog-
nitive robots can accomplish everyday activities, in general, and how they can tackle the
problem of action selection and action execution, in particular. Rather than choosing a cog-
nitive architecture that is a candidate-unified theory of cognition, for example, Soar, ACT-R,
CLARION, or LIDA, we selected CRAM because it is a robot cognitive architecture that
was specifically designed to enable robot agents to carry out everyday manipulation tasks.
We acknowledge that Soar and LIDA, and a version of ACT-R—ACT-R/E (Trafton et al.,
2013)—have been applied in robotics and that Soar has addressed the two-system approach
(Laird & Mohan, 2018) entailed by the situation model framework described in Section 3.

2.2. Challenges of everyday activities

The CRAM cognitive architecture addresses five challenges in carrying out everyday
activities.

First, requests for accomplishing everyday tasks are typically underdetermined. Requests
such as “set the table,” “load the dishwasher,” and “prepare breakfast” typically do not fully
specify the intended goal state, yet the requesting agent has specific expectations about the
results of the activity. Consequently, the robot agent carrying out the everyday activity needs
to acquire the missing knowledge and disambiguate information to accomplish the task in
the expected manner. To set the table, a robot agent also needs to generate subtasks, such as
putting each object on the table where it is expected to be.

Second, accomplishing actions requires context-specific behavior. The underdetermined
request “fetch the next object and put it where it belongs” has to generate different behaviors
depending on the object, its state, the current location of the object, the scene context, the
destination of the object, and the task context. The behavior has to be carefully chosen
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to match the current contextual conditions. Variations in these conditions require adap-
tive behavior.

Third, competence in accomplishing everyday manipulation tasks requires decisions based
on knowledge, experience, and prediction. The knowledge required includes common sense,
such as knowing that the tableware to be placed on the table should be clean and that clean
tableware is typically stored in cupboards. It also requires intuitive physics knowledge, for
example, that objects should be placed with their center of gravity close to the support surface
to avoid them toppling over. Domain knowledge might include the fact that plates are made
of porcelain, which is a breakable material. Experience allows the robot agent to improve the
robustness and efficiency of its actions by tailoring behavior to specific contexts. Prediction
enables the robot to take likely consequences of actions into account, such as predicting that
a specific grasp would require the object to be subsequently regrasped in order to place it at
the intended location.

Fourth, accomplishing everyday manipulation tasks requires the robot agent to reason at the
motion level, predicting the way the parameterization of motions alters the physical effects
of these motions, and thereby identifying the best way to achieve the intended outcomes and
avoid unwanted side effects. For example, in order to pour something from a pot onto a plate,
a robot agent has to infer that it has initially to hold the pot horizontally and then tilt it. To
do this, it has to grasp the pot with two hands such that the center of mass is in between the
hands because the tilting motion is the easiest when grasping the handles and rotating the pot
around the axis between the handles.

CRAM also addresses a fifth challenge: a robot agent should be able to answer questions
about what it is doing, why it is doing it, how it is doing it, what it expects to happen when
it does it, how it could do it differently, what are the advantages and disadvantages of doing
it one way or another, and so on. This applies both to making decisions and reasoning about
motions. This ability is important because it allows the robot agent to assess the cost of not
doing something effectively or failing to do it. This understanding also allows a robot agent
to discover possibilities for improving the way it currently does things.

2.3. Overview of the CRAM approach to carrying out everyday activities

The components of the CRAM cognitive architecture are shown in Fig. 3. These are: (a) the
CRAM Plan Language (CPL) executive; (b) a suite of knowledge bases and associated rea-
soning mechanisms, collectively referred to as KnowRob 2.0 (Beetz et al., 2018); (c) a percep-
tion executive referred to as RoboSherlock; (d) an action executive referred to as Giskard; and
(v) a metacognition system referred to as COGITO. CRAM operates via a dialog between the
plan executive and KnowRob 2.0, in which the plan executive presents a series of queries
for motion plan parameter values' and KnowRob 2.0, as an implementation of the generative
model,! provides the corresponding responses containing the required values.

The current abilities of CRAM to accomplish everyday activities have been demonstrated
in an exercise requiring a robot agent to set and clean a table, given vague task requests. The
approach we have adopted, explained more fully below, only requires a carefully designed
generalized action plan for fetching and placing objects. This plan can be executed with
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Fig. 3. The CRAM cognitive architecture. The inputs are underdetermined instructions, that is, underdetermined
action or task descriptions (top left) and sensor data (bottom left). The output is the robot body motion which
maximizes the likelihood of success of the action.

different types of robot and it can be used with other objects and in different environments.
The plan is automatically contextualized for each individual object transportation task. Thus,
the robot infers the body motions required to achieve the respective object transportation task
depending on the type and state of the object to be transported (be it a spoon, bowl, cereal
box, milk box, or mug), the original location (be it the drawer, the high drawer, or the table),
and the task context (be it setting or cleaning the table, loading the dishwasher, or throwing
away items) (Kazhoyan & Beetz, 2019b). In doing this, it avoids unwanted side effects (e.g.,
knocking over a glass when placing a spoon on the table). The body motions generated to
perform the actions are varied and complex and, when required, include subactions such as
opening and closing containers, as well as coordinated, bimanual manipulation tasks. The
results of the exercise are documented in a short video? and Fig. 2 shows some examples of
the robot grasping objects in different ways during this exercise. All of these grasp strategies
are inferred from the robot’s knowledge base: the spoon in the drawer is grasped from the top
because it is a very flat object; the tray is grasped with two hands because the center of mass
would be too far outside the hand for a single-hand grasp; the mug is grasped from the side
and not at the rim because the purpose of grasping it is pouring liquid into the mug.
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Fig. 4. Motion plan for the fetch and place generalized action plan. (a) The motion phases as described in (Flana-
gan, Bowman, & Johansson, 2006): motion phases, each governed by a subaction controller, are depicted in blue
boxes, while the control points depicted by circles represent the task subgoals. (b) The realization of this approach
in CRAM, showing the motion designators that comprise each motion phase depicted in orange boxes, together
with their associated motion parameters. Note that Flanagan et al. (2006) refer to action phase rather than motion
phase. We use motion phase here to connote a low level of abstraction and avoid confusion with the high level of
abstraction generalized action plan.

There are five key elements in the CRAM approach to carrying out everyday activities.

First, there is the underdetermined action description. This is a high-level abstract speci-
fication of the robot actions required to carry out an everyday activity, for example, “set the
table.” As we noted already, these action specifications are framed in incomplete terms, that
is, they do not provide all knowledge required to complete the task.

Second, there is the related concept of a generalized action plan. This is a computational
encapsulation of an underdetermined action description that can be deployed in many every-
day contexts. There is a generalized action plan for every category of underdetermined action
description, each of which typically corresponds to action verbs such as fetch, place, pour,
and cut. A generalized action plan specifies an action schema, that is, a template of how
actions of this category can be executed.

Third, there is the motion plan. This is a sequence of parameterized motion phases. Each
motion phase has several parameters that can be set to adapt the motions to the current context.
The generalized action plan is expanded into a motion plan, and the motion plan is executed.
The motion phase parameter values determine the exact nature of the motion. In structuring
the motion plan, an approach similar to that described by Flanagan et al. (2006) is adopted, but
with a slightly finer-grained representation of motion phases; see Fig. 4. Each motion phase
has a goal. When the goal is achieved, the start of the subsequent motion phase is triggered.
Goals can be force-dynamic events, for example, the robot finger coming into contact with
the object to be grasped, or other perceptually distinctive events, for example, a milk carton
becoming visible when a fridge door is opened.
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The fourth element is the process of transforming the generalized action plan into the
motion plan and the subsequent identification of the motion parameter values that maximize
the likelihood that the associated body motions successfully accomplish the desired action.
This process is called contextualization. It operates on an element of the generalized action
plan known as an action designator, effectively a placeholder for information that is not yet
known and that must be provided to carry out the motion plan.

The fifth element is the generative model. This is the means by which the motion
parameter values are identified. It is a joint distribution of motion parameter values and
the associated effects of performing these motions. It provides the basis for a mapping
from desired outcomes of an action to the motion parameter values that are most likely to
succeed in accomplishing the desired action. In CRAM, the generative model is realized
through knowledge representation and reasoning, based on a robot’s tightly coupled symbolic
and subsymbolic knowledge, the tasks it is performing, the objects it is acting on, and the
environment in which it is operating.

Let us see how the five elements and the five components of the CRAM cognitive archi-
tecture fit together and how they address the five challenges.® The CPL executive allows
underdetermined action descriptions (element 1) expressed as generalized action plans (ele-
ment 2) to be transformed into motion plans (element 3) through the contextualization pro-
cess (element 4), using KnowRob 2.0 to fulfil the role of the generative model (element 5).
RoboSherlock provides the perceptual input for the contextualization process, while Giskard
is responsible for executing the motion plans. Cogito provides a capacity for improving per-
formance through plan transformation, tailoring behaviors to specific tasks and context by
enhancing the generative model. Thus, the CPL executive addresses challenge 1 (underdeter-
mined action requests) through the use of generalized action plans and it addresses challenge
2 (context-specific behavior) by exploiting run time contextualization. KnowRob 2.0 uses
reasoning and its several knowledge bases (see Fig. 3), as well as internal simulation with
its inner world model, to address challenge 3 (decisions based on knowledge, experience,
and prediction). In particular, it uses reasoning with the episodic memory knowledge base
comprising the NEEMS* knowledge base (including motor control procedural data) and a
generalized knowledge base to address challenge 4 (reasoning at the motion level). While
performing an activity, the robot logs its perception and execution data, including sensory
data and control signals. These records of external perceptions and the internal semantically
annotated control structures allow KnowRob 2.0 to address challenge 5 (the ability to answer
questions about what the robot is doing, how it is doing it, and what it expects to be the
outcome, for example).

2.4. Accomplishing the various types of tasks in CRAM

Complex tasks are accomplished in CRAM using knowledge, reasoning, and internal sim-
ulation in KnowRob 2.0 to identify the parameter values to successfully carry out the action.
Sensory information is available from the perception executive to resolve object designators
and provide information about the pose of the objects to be manipulated. The action executive
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then controls the robot by mapping the parameterized motion plans to adaptive trajectories in
real time.

The plan executive can also execute plans without engaging in a dialog with KnowRob 2.0.
In this case, all the knowledge required to execute the plan, that is, to resolve the action
designators, can be compiled into the plan.’ This is how simple tasks are accomplished
in CRAM.

In its current state, CRAM is only able to accomplish easy everyday activities, but not
difficult ones, in the sense described in Section 1. This is because CRAM depends on the
existence of an appropriately designed generalized action plan corresponding to each class
of underdetermined action description. In other words, the solution strategy has already been
identified. Simple tasks can be accomplished without the aid of KnowRob 2.0 because of the
strong constraints on the combination of steps, and degrees of freedom in each step, and these
constraints are encapsulated in rules in the plan executive. Complex tasks require KnowRob
2.0 to compensate for weak constraints by bringing to bear knowledge and reasoning, using
its several knowledge bases and ontologies to infer possible motion parameter values and then
to simulate the use of these in the inner world knowledge base before identifying those that
are most likely to succeed, and returning them to the plan executive for subsequent action exe-
cution.

An alternative way to capture the current capabilities of CRAM is to distinguish between
old actions and new actions, and known outcomes and new outcomes; see Fig. 5. Difficult
tasks (the bottom two quadrants in Fig. 1) correspond to tasks requiring either new actions or
new outcomes; easy tasks (the top two quadrants in Fig. 1) correspond to the situation where
the actions are known and the outcomes are known. At present, CRAM can accomplish tasks
in the top-left quadrant: using known actions to accomplish known outcomes. If we wish to
accomplish difficult tasks using new actions or with new outcomes, we need flexible cognitive
behavior. In the next section, we describe the situation model framework as a possible way of
realizing such flexible behavior in cognitive agents, in general, and in the next generation of
the CRAM cognitive architecture, in particular.

3. The situation model framework

The Situation Model Framework was introduced by Schneider et al. (2020) as the basis for
understanding how flexible context-sensitive cognitive behavior is realized in humans, ani-
mals, and machines. It has five elements: (a) behavioral episodes, (b) the two-system approach
to thought and action, (c) capacity-limited working memory, (d) attentional control, and
(e) cognitive maps (see Fig. 6).

A behavioral episode links the functional elements of perception, long-term memory, and
motor control for action. Thus, a behavioral episode is a joint representation of perception and
action and comprises objects, scenes (i.e., arrangements or layouts of objects), actions, and
action outcomes, capturing the causal link between observation of a current state, an action,
and the perception of the outcome of that action.
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The situation model framework makes a distinction between habitual and cognitive (i.e.,
deliberative) behaviors that, reflecting work by Norman and Shallice (1986), posit that action
is controlled in two distinct ways. One is based on well-learned habits that demand little
attentional control. The other, which can override habitual control, involves a second process,
a supervisory attentional system that deals with situations that cannot be handled by habit-
based processes. This “two systems” approach to action control is related to dual process/two
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systems approaches to human thought, for example, Kahneman (2003) and Stanovich and
West (2000). These approaches have a long history, dating back to James (1890); see Sloman
(1996) and Stanovich and West (2000) for details. In habitual actions, System 1 retrieves a
number of behavioral episodes, subjects them to a winner-take-all competition, and selects
one winning behavioral episode, a process referred to as “contention scheduling.” This
winning behavioral episode then controls the action by filling in the required sensor or motor
information in real time. In System 2, the behavioral episodes can be recalled and optionally
modified, or newly constructed, and then simulated to assess the outcome of the action.
Thus, System 1 involves reactive or “automatized” (Schneider et al., 2020) control of action
based on previous experience encapsulated in behavioral episodes retrieved from long-term
memory (see also Neumann, 1984), while System 2 involves cognitive (i.e., deliberative)
control of action.

A key function of working memory refers to the ability to manipulate information
(Baddeley, 2012; Baddeley & Hitch, 1974), a function that Oberauer (2009) attributes to the
limited “region of direct access” that is able to actively process a small number of chunks
of information by a “focus of attention.” The situation model framework suggests that this
manipulation function of working memory is a capacity-limited System 2 property that is
missing within System 1. Flexible cognitive behavior is achieved in System 2 by exploiting
three working memory mechanisms linked to behavioral episodes: (i) a mechanism to set
up novel episodes that are not yet a part of long-term memory, (ii) a mechanism to predict
covertly, that is, by simulation, the outcome of a behavioral episode, and (iii) a mechanism to
improve or refine a behavioral episode through fast learning. Thus, the behavioral episodes
that enable cognitive behaviors have three features. They can be constructed on the fly in
working memory. They can be tested through internal simulation (they can also be tested in
reality by enacting them). Finally, they can be quickly learned and assimilated into long-term
memory so that they can be deployed again in the future.

The information that is retrieved from the large amount of knowledge available in long-
term memory must be constrained, just as information flowing from perception must be con-
strained. In effect, knowledge is bound to the current context and combined in a flexible
manner that is constrained by the current task. This is achieved by deploying a process of
internal selective attention when retrieving information from long-term memory and exter-
nal selective attention when extracting information from the environment through perception
(Chun, Golomb, & Turk-Browne, 2011). These processes of selective attention—external and
internal—serve to constrain the complexity of the activity by restricting the number of behav-
ioral episodes that need to be selected or constructed and evaluated to find the one that suits
the current task. In addition, attentional processes select spatial movement parameters of the
desired action target object (Schneider, 1995).

Within the situation model framework, the term situation model describes the computa-
tional space enabling flexible and context-sensitive behavior. Such a space has also been
examined under the concept of a cognitive map, a term coined by Tolman (1948) to refer
to a rich internal model of the world that encapsulates the relationship between events and
that can be used to predict the consequences of events (Behrens et al., 2018). Thus, while the
concept of a cognitive map is traditionally linked with the neuroscience underpinning spatial
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behaviors (O’Keefe & Nadel, 1978), for Tolman, a cognitive map provides a way of orga-
nizing knowledge in all domains of behavior in a systematic manner (Behrens et al., 2018),
that is, “an abstract map of causal relationships in the world” (Wikenheiser & Schoenbaum,
2016). At present, the situation model framework is not specific about how cognitive maps
are to be constructed.

4. Carrying out everyday activities from the perspective of the situation model
framework

Easy simple activities (refer to Fig. 1) are candidates for habitual behavior effected with
System 1, where behavioral episodes that match the current context are recruited and deployed
directly without the need to adapt them. Specifically, the selected episode controls behavior
by filling the open parameters of the current episode (object, scene, action, and outcome) with
appropriate sensory information (environment, body) and knowledge retrieved from memory.
If this parameter filling generates behavior sufficient to achieve the intended action goal with-
out the use of additional decision making or attentional processes, then the habitual mode of
action control by System 1 is suggested to be at work. If not, or if the action fails, the agent
will revert to deliberative behavior by engaging System 2.

Complex activities typically require deliberative System 2 behavior by virtue of their com-
plexity. However, here too an agent may benefit from accumulating experience and succeed
in reducing the initial difficulty of the task. Importantly, such reduction may bring the task
into the range of feasibility for the agent. But it is inevitable that here a significant level
of difficulty will remain: the task will only move closer toward the upper right quadrant in
Fig. 1.

Returning to the dishwasher loading problem, we know that the involved geometry plan-
ning problems can become extremely hard on “adversarial” problem instances. This shows us
that we never can reduce the difficulty of this complex problem to a level that is completely
within the range of purely habitual behavior. But assimilation of sufficiently many success-
ful deliberation outcomes into long-term memory and association with their specific contexts
may gradually refine our repository of habitual behaviors such that they begin to cover more
and more realistically occurring situations. This will enable System 1 to “almost always”
select a habitual behavior that is a strong candidate for a solution, ultimately making the need
for System 2 deliberation and creation of new behaviors and their validation using internal
simulation a rare event.

Difficult simple activities, too, will require deliberation and the deployment of System
2, with recall, construction, recombination, and internal simulation of behavioral episodes.
With experience, the solution strategy may become more evident to the agent on subsequent
encounters with the activity, in which case the activity may become easy and simple, requiring
only habitual System 1 mechanisms for successful action execution.

Finally, as in the dishwasher example, some activities—simple or complex—that have
become amenable to habitual execution can also on occasion require the recruitment of the
mechanism responsible for deliberative behavior, for example, in cases where the action fails
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or when something unexpected happens. That is, even easy simple tasks may, on occasion,
require the deployment of System 2.

Let us now address the alternative characterization of everyday activities in Section 2.4,
that is, whether they involve known or new actions and known or new outcomes. Activities
involving a known action and a known outcome can be either simple or complex and, as such,
will require either habitual System 1 or deliberative System 2 approaches, as discussed above.
The CRAM cognitive architecture is currently capable of accomplishing everyday activities
in this class.

Activities involving a known action and a new outcome, such as the example in Fig. 5
of covering a pizza base with tomato sauce by repeatedly picking and placing the tomato
sauce with the aid of a spoon, require, initially at least, deliberative System 2 behavior to
generate a new behavioral episode, involving a new object (tomato sauce), a known action
(pick and place), and a new outcome (tomato sauce at multiple locations on the pizza base).
It also requires deliberative System 2 behavior to identify the solution strategy of chaining
together multiple instances of these behavioral episodes, each instance at a different location
on the pizza.

In the case of activities involving a new action and a known outcome, deliberative System
2 behavior is also required, this time to generate a new behavioral episode to shift the bowl
out of the way of the milk carton (a new action, comprising a known movement—push—to
achieve a new goal). It also requires, as in the previous case, deliberative System 2 behavior
to generate the sequential strategy of first pushing the bowl to the side and then picking up
the milk carton (a known outcome).

Finally, in the case of activities involving a new action and a new outcome, again, we
require the construction of a new behavioral episode comprising a new action (spread,
based on push but with the goal of relocating only part of a deformable object) and a new
object (tomato sauce) with a new outcome (evenly spread tomato sauce covering the pizza
base).

The concept of a new action requires some clarification. An action is not just a move-
ment: an action has an implied goal. Thus, new actions can be achieved in three ways: by
using an existing movement in a new context (i.e., new goal and outcome), using a com-
pletely new movement in a known context, and using a completely new movement in a new
context. Thus, a push might involve a sideways motion intended to relocate a rigid object
(a known action) or it might form the basis of a new action as a sideways motion with the
goal of relocating some of a deformable object, for example, the new action of spreading
tomato paste on a pizza base. We view the action in a behavioral episode as a motion phase
in a CRAM motion plan, not as a high-level action as in a CRAM-generalized action plan.
Thus, a high-level action can comprise a sequence of behavioral episodes, as in the case of
pushing aside the bowl in the fridge before picking up the milk carton or multiple instances
of picking and placing the tomato sauce on the pizza base. In other words, a new action,
in the sense of a high-level action, can also be formed by a new sequence of behavioral
episodes.

As a shared feature, we see that it is always the occurrence of some element of novelty that
poses the challenge to both robots and natural agents. Those with higher brains then resort
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to System 2 to trigger a process of deliberation. Thus, the structures that are in the focus of
the situation model framework (behavioral episodes, interplay of System 1 and System 2,
capacity-limited working memory, and attention) can be seen as aimed at a transformation
of novelty into familiarity. Together, they realize an intricate machinery that incrementally
creates powerful computational guidance structures to make acting as swift and successful
as possible within a complex and uncertain world: new episodes compile and accumulate
the outcomes of deliberation into a rapidly reusable form, attention helps a capacity-limited
working memory to identify, set up, and predict the prospects of required new combinations of
action elements, and cognitive maps support this generative activity by providing optimized
feature spaces that afford flexible internal navigation and simulation. Identifying this interplay
of processes in greater depth and bringing it to robots is the promise that the situation model
framework has for cognitive robotics.

5. Conclusion

We close by highlighting what the CRAM model reveals about the information pro-
cessing capabilities that are sufficient for accomplishing some everyday activities. Our
hope is that these information processing models might be used to construct hypotheses
that can also be studied in human cognition. First, generalized action plans together with
modular, composable knowledge chunks representing general knowledge, including com-
mon sense and intuitive physics, are sufficient to explain a large part of what is needed
to accomplish underdetermined, human-scale everyday task requests. Second, generalized
action plans, together with knowledge and reasoning, provide a sufficient basis for internal
simulation and, if one assumes that other agents use similar plans, this makes the interpre-
tation of the everyday actions of other agents much easier. Third, robustness in achieving
tasks can be realized through failure handling methods that exploit the fixed structure
of the generalized action plans and the knowledge about the goal implied by the action
description.

The situation model framework with its behavioral episode representation and the causal
relations between objects, scene, action, and outcome, coded within it, together with the
mechanisms for recall, construction, recombination, and internal simulation of behavioral
episodes, offers a way to realize the flexibility required for difficult everyday activities. Any
such realization in the next generation of CRAM will require many computational model-
ing and design decisions. In particular, two issues must be addressed: (i) the representation
of behavioral episodes and cognitive maps, and the instantiation of the many processes that
operate on these representations; and (ii) the integration of these representations and attendant
processes in the CRAM plan language.

Regarding the former, inspired by the object-action-complex (OAC) (Kriiger et al., 2011),
we are currently investigating the implementation of behavioral episodes as a form of joint
episodic-procedural associative memory (Vernon, Beetz, & Sandini, 2015) using convolu-
tional and recurrent neural networks, such as the sequence autoencoder-based approach pro-
posed by Noda, Arie, Suga, and Ogata (2014). We plan on implementing cognitive maps
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either as a network of joint episodic-procedural memories, each one encoding a given
action, or as a single recurrent joint episodic-procedural memory that encodes all possible
actions.

Regarding the latter, we will exploit a form of self-programming in the CRAM plan lan-
guage executive so that, in the event that a generalized action plan fails (either prospectively
in simulation or actually during action execution), it will invoke a plan generation process
that will use the cognitive map as a generative model.

The representation of (hierarchical) networks of behavioral episodes poses a significant
challenge because of the danger of an exponentially large space of permutations. Possible
lines of enquiry to deal with this include the use of graphical models of causal relationships
(Didelez, 2018). Understanding the relationship between networks of behavioral episodes
and cognitive maps is perhaps the ultimate goal, the pursuit of which will surely shed fur-
ther light on the nature of the mechanisms underlying cognitive behavior when engaged in
everyday activities.
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Notes

1 The motion plan and the generative model are two elements of the CRAM approach to
carrying out everyday activities; we explain them in the text that follows.

2 https://www.ease-crc.org/link/video-ease-robot-day

3 It is a coincidence that there are five challenges, elements, and components in CRAM,
and five elements in the situation model framework. No direct correspondence between
any of them should be inferred.

4 Narrative enabled episodic memories (NEEMs) are CRAM’s generalization of episodic
memory, encapsulating subsymbolic experiential episodic data, motor control procedural
data, descriptive semantic annotation, and the accompanying mechanisms for acquiring
them and learning from them in KnowRob 2.0.

5 It can also be embedded in KnowRob 2.0.
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