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Overview

I blavaan: Translating lavaan syntax to JAGS/Stan code;
estimating/summarizing Bayesian models.

I Goals for today:
I Comparison of JAGS vs Stan estimation of SEMs (Stan is a

relatively new development).
I Discussion of computational methods for DIC/WAIC/LOOIC in

models with latent variables.



Overview

I JAGS and Stan differ in MCMC samplers employed: JAGS uses
traditional samplers, whereas Stan uses Hamiltonian Monte
Carlo (improved sampling via likelihood derivatives).

I To sample from SEMs more quickly and efficiently, we can use
some tricks to define the models. JAGS tricks differ from Stan
tricks.



Tricks

I To improve sampling speed and efficiency, we focus on
multivariate distributions in the model (typically, inverse and
determinant of multivariate normal covariance matrix)

I JAGS: Overparameterize the model to obtain conditional
independence

I Stan: Computational shortcuts in evaluating multivariate
normal distribution of latent variables (inverse & determinant)



JAGS Tricks
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JAGS Tricks
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Stan Tricks

I Stan works better with identified likelihoods (the JAGS tricks
have completely failed so far).

I Speed can be gained through economic evaluation of the latent
variable distribution (multivariate normal).

I Stan provides functionality to easily specify a new likelihood. So
we can define a new multivariate normal likelihood that makes
use of the SEM framework.



Stan Tricks

I Typical SEM distribution of latent variables (η):

η ∼ N(α, (I − B)−1Ψ(I − B′)−1)



Stan Tricks

I Inverse covariance matrix often can be written to avoid
inverses:

Σ = (I − B)−1Ψ(I − B′)−1

Σ−1 = (I − B′)Ψ−1(I − B)



Stan Tricks

I Determinant of the covariance matrix can also be simplified:

det(Σ) = (det(I − B))−1det(Ψ)(det(I − B))−1.

I B is often lower triangular (recursive models), so det((I − B))
is the product of diagonal entries.

I Ψ is often diagonal, so det(Ψ) is the product of diagonal
entries.



Stan Tricks

I For Stan, blavaan looks at the model syntax and employs the
matrix tricks where it can.

I There is potential for further improvements for specific types of
models (e.g., path analysis).



Comparison 1
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Comparison 1

I Run 3 parallel chains in JAGS and in Stan for 1000 sample
iterations (1000 burnin in JAGS, 100 burnin in Stan).

I Posterior means/SDs are equal enough
I JAGS: 15sec
I Stan: 115sec with compilation, 84sec after compilation



Comparison 1

I But raw timing isn’t really want we want. Stan produces better
samples (less autocorrelation), so we can get by with fewer
Stan samples.

I We should instead look at effective sample size, translating
1000 correlated samples to some smaller number of
independent samples.



Comparison 1
I Effective sample size per second:
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Comparison 2
I What about something more complex? (from Kievit et al, in

press)



Comparison 2

I Run 3 parallel chains in JAGS and in Stan for 1000 sample
iterations (4000 burnin in JAGS, 300 burnin in Stan).

I JAGS: 20min, but fails to converge due to high autocorrelation.
Requires longer runs with thinning.

I Stan: 1hr25min with compilation, 1hr23min after compilation



Comparison 2
I Effective sample size per minute:
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Comparison 2

I For parameters of main interest (feedback, slope/intercept
parameters, “coupling” parameters), Stan has a small edge on
JAGS. The reverse is true of other parameters.

I JAGS chains have large autocorrelation, so thinning and long
chains are required there.

I If you dislike waiting, neither is optimal.



Information criteria

I Another issue: many (often overlooked) ways to compute
information criteria in Bayesian SEM. (Merkle, Furr,
Rabe-Hesketh, under review)

I MCMC algorithms typically sample the latent variables, which
implicitly counts them as parameters in a “conditional”
likelihood.

I But traditional applications of SEM integrate out latent
variables, yielding “marginal” metrics that focus on
generalization to new people.

I Further, JAGS and BUGS use different equations for DIC, so
they will seldom agree exactly.



Information criteria

I Interpretations of Bayesian criteria
I Conditional: Ability of model to generalize to new data from the

same individuals/cases. (“Leave one unit out” cross-validation)

I Marginal: Ability of model to generalize to new data from new
individuals/cases. (“Leave one cluster out” cross-validation)

I In most SEM applications, marginal is preferable. But this is
typically not what we would automatically obtain from
BUGS/JAGS/Stan.



Information criteria

I DIC computations for nine CFA models (10 replications each;
models from Wicherts et al., 2005)
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2 2a 3 3a 4 5 5a 5b 6 2 2a 3 3a 4 5 5a 5b 6

4310

4315

4320

4325

4330

3950

4000

4050

4100

4150

4200

Model

D
IC

 v
al

ue



Information criteria

I Effective number of parameters for nine CFA models
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Conclusions

I DIC (also WAIC, LOO-CV) values/conclusions depend on
conditional vs marginal likelihood, with marginal being
preferred.

I The metrics have large Monte Carlo error (larger than
individual parameters), so long chains are required to obtain
stable values.

I DIC values/conclusions differ from BUGS to JAGS.



Conclusions

I For traditional SEMs, JAGS and Stan often perform similarly.

I For complex models (of primary interest for Bayesian SEM?),
Stan is more likely to converge in fewer iterations and without
thinning. But it is also slow.

I All computations described here are implemented in blavaan.



Resources

I Merkle, E. C. & Rosseel, Y. (in press). blavaan: Bayesian
structural equation models via parameter expansion. Journal of
Statistical Software.

I Merkle, E. C., Furr, D., & Rabe-Hesketh, S. (under review).
Bayesian model assessment: Use of conditional vs marginal
likelihoods. https://arxiv.org/abs/1802.04452

I http://faculty.missouri.edu/~merklee/blavaan/

I install.packages("blavaan")
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