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Overview

m Multilevel data
m Multilevel mediation and factor analysis
m Problems

0 Interpretation

o0 Estimation

m Small simulation study
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Multilevel data

clusters
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Multilevel hypotheses

m Typology of variables:

o Level 1 variables: all variables on which individuals in the same cluster can
have different scores
o Level 2 variables: all variables on which individuals in the same cluster can

not have different scores

m Most Level 1 variables have variance at level 2 as well! E.g. the average job
performance differs across companies, the average math ability may differ across
school classes

m Hypotheses may involve variables at different levels

o E.g. Math self-efficacy mediates the influence of classroom climate on math

achievement
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Multilevel variable decomposition
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Multilevel variable decomposition

Differences between clusters
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Multilevel variable decomposition

Differences within clusters
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Within / between formulation

m Observed variable is decomposed into a within-
and a between-component

@ Between level / Level 2

Yij =Y + U 0

\

@ Within level / Level 1
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Multilevel mediation

Psychological Methods © 2010 American Psychological Association
2010, Vol. 15, No. 3, 209-233 1082-989X/10/$12.00 DOI: 10.1037/a0020141

A General Multilevel SEM Framework for Assessing Multilevel Mediation

Kristopher J. Preacher Michael J. Zyphur
University of Kansas University of Melbourne

Zhen Zhang

Arizona State University

Several methods for testing mediation hypotheses with 2-level nested data have been proposed by
researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not
accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of
between- and within-level components of indirect effects. Moreover, these methods have each appeared
in isolation, so a unified framework that integrates the existing methods, as well as new multilevel
mediation models, is lacking. Here we show that a multilevel structural equation modeling (MSEM)
paradigm can overcome these 2 limitations of mediation analysis with MLM. We present an integrative
2-level MSEM mathematical framework that subsumes new and existing multilevel mediation ap-
proaches as special cases. We use several applied examples and accompanying software code to illustrate
the flexibility of this framework and to show that different substantive conclusions can be drawn using
MSEM versus MLM.
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Multilevel mediation

Most common models

X M Y (McNeish, 2017)
O

Each of the three variables can be Cevel 1 - 1
on the within-level or on the 1 2 1
between-level (Preacher, Zyphur 1 y) 2
& Zhang, 2010) 5 ; 7
2 2 1

2 2 2

1 1 2

2 1 2
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Example 1-1-1 mediation

Students nested in classes Student-level indirect effect: ay,*by,
Class-level indirect effect: ag*bg

m X: Student self-esteem
m M: Student effort
m Y: Student math performance

- Level 2

- Level 1

WG SEM 2018 - Amsterdam 11



UNIVERSITY OF AMSTERDAM
X

If any of the three variables is a
between-level variable, mediation

Example 2-1-1 mediation occurs at the between-level only

1 . *
Employees nested in teams Indirect effect: ag*by

m X: Treatment variable “Training on the job’
m M: Job-related skills
m Y:Job performance

- Level 2

- Level 1
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Multilevel mediation with latent variables

Examples from Preacher et al. (2010)

Between Example 2 Between Example 3
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Multilevel mediation with latent variables

Example from Morin et al. (2014)
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Multilevel mediation with latent variables

m Liand Beretvas (2013)

m Comparing mediation models with composite
scores vs. latent variables

® Serious convergence issues with N ... ... < 80

® Low power to detect indirect effect

m “Unfortunately, MLSEM cannot be recommended
over the use of composite scores for the majority
of conditions examined”
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Multilevel confirmatory factor analysis

Article

Journal of Educational and Behavioral Statistics
2016, Vol. 41, No. 5, pp. 481-520
DOI: 10.3102/1076998616646200
C 2016 AERA. hitp://jebs.aera.net

Construct Meaning in Multilevel Settings

Laura M. Stapleton
Ji Seung Yang
Gregory R. Hancock
University of Maryland

We present types of constructs, individual- and cluster-level, and their con-
firmatory factor analyvtic validation models when data are from individuals
nested within clusters. When a construct is theoretically individual level,
spurious construct-irrelevant dependency in the data may appear to signal
cluster-level dependency; in such cases, however, and consistent with theory, a
single-level analysis with a correction for dependency may be appropriate.
Regarding cluster-level constructs. we discuss two tvves—shared and confie-
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Interpretation two-level factor model

Factor loadings equal 3 />

across levels: Factors have class
the same interpretation
across levels
y
V1 V2 V3 V4 V5
N E 7 7 7
A4 \ 4 v 4 v )
V1 V2 V3 V4 V5

—
Residual variance at

Level 2 can be
interpreted as
& measurement bias with

student respect to unmeasured
Level 2 variables
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Cross-level invariance

m Not mentioned by Preacher et al. (2010) or Li and
Beretvas (2013)

m Li and Beretvas generated data with cross-level
invariance, but did not constrain A when fitting

the model

0 Interpretation problems

0 Estimation problems
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Simulation study

m Effect of not-applying cross-level invariance
constraints on convergence and power

m Generate 2000 datasets under model with cross-
level invariance

m Fit model with and without across-level
invariance with lavaan
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Population model

ICC=.33
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Results

m Non-convergence ICC=.17
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Results

| Warnlngs (“some estimated ov variances are negative”)

Warnings

ICC=17 ICC=33

06-

model

0.4- :
& free
=&~ invariant

02-

0.0-

20 40 60 80 100 20 40 60 80 100
N between

22



UNIVERSITY OF AMSTERDAM
X

Results

| Slgnlflcant indirect effect (based on delta-method)
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Results

m Significant direct effect
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Conclusion and discussion

m Cross-level invariance of lambda (if appropriate)

0 Facilitates interpretation

0 Enhances estimation and power

m If not appropriate

0 Biased mediational effects (Guenole, 2016)
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Conclusion and discussion

m [f strong factorial invariance across clusters
holds: Awithin = Abetween and 0 =0

0 Reduces number of parameters - less

between

estimation problems?
m Need to extend simulation study

o Vary N vary ICC, bootstrap SEs

within’
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Thank you for listening!

m Questions?
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