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background

* atypical dataset in the social and behavioural sciences:

many constructs (motivation, ability, personality traits, ...)

each construct is measured by a set of (observed) indicators

many ‘background’ variables (age, gender, ...)

(multilevel data, missing data, categorical data)

¢ the measurement instruments for the latent variables are well established,
and usually fit (reasonably) well

* the main focus of the study is the structural part of the model:

— regression model: variables are either dependent or independent

— path analysis model: includes mediating effects, perhaps non-recursive

* the sample size is not always very large
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structural model: regression model
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structural model: path analysis model
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the golden standard: structural equation modeling (SEM)
* what do I mean with ‘SEM’:

— statistical model: measurement part + structural part
— estimation procedure: system-wide

x all the (free) parameters are estimated simultaneously
* in the continuous case, the software default is usually ML

— assessment of model fit: global fit measures

¢ but, what about:

model misspecification

local fit measures

conceptual distinction: measurement part versus structural part

small samples
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why we may not need SEM after all: alternatives

* alternative approaches:

consistent PLS (Dijkstra, T.K., 2010, 2014)

model-implied instrumental variables estimation (Bollen, 1996, 2001)
(software: R package ‘MIIVsem’)

two-step approaches

factor score regression

* shared advantages:

reduced model complexity

consistent estimates (at least for the structural part)

robust to local misspecifications

(almost) no convergence issues
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a simple example

* consider the regression of a measured latent variable Y on another measured
latent variable X:

* we are mainly interested in the question: is there a significant effect from X
on Y'? We want to test the hypothesis:

HO:B=O
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data generation

library (lavaan)

pop.model <- '
# factor loadings
Y =" 1xyl + 0.8%y2 + 0.6%y3
X =7 1%x1 + 0.8%x2 + 0.6%x3

# regression part
Y 7 0.25%X
set.seed (1234)
Data <- simulateData (pop.model, sample.nobs = 200L, empirical = TRUE)

VV+++++++VYV

the golden standard: SEM

model <- '
# factor loadings
Y ="yl + y2 + y3

X =" x1 + x2 + x3

# regression part
Y ° X

fit.sem <- sem(model, data = Data, estimator = "ML")
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output SEM

> parameterEstimates (fit.sem, add.attributes = TRUE,

Parameter Estimates:

Information Expected
Information saturated (hl) model Structured
Standard Errors Standard

Latent Variables:

Estimate

v =~
yl 1.000
y2 0.800
y3 0.600

X =~
x1 1.000
x2 0.800
x3 0.600

Regressions:

Estimate

v~
X 0.250

Std.Err z-value P (>|z|)

0.161 4.972 0.000
0.123 4.881 0.000
0.169 4.735 0.000
0.129 4.661 0.000

Std.Err z-value P(>|z])

0.114 2.189 0.029

FALSE) [1:7,]
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two-step estimation
¢ old idea:

— Burt, R.S. (1976). Interpretational confounding of unobserved variables in
structural equation models. Sociological methods & research, 5, 3-52

— Anderson, J.C., & Gerbing, D.W. (1988). Structural equation modeling in
practice: A review and recommended two-step approach. Psychological bul-
letin, 103, 411-423

* recently, these ideas have been used in the latent class literature, e.g.:

Bakk, Z., Oberski, D.L., & Vermunt, J.K. (2014). Relating latent class
assignments to external variables: standard errors for correct inference.
Political analysis, 22, 520-540.

* forthcoming: joint work with Zsuzsa Bakk, Jouni Kuha & Yves Rosseel:
two-step approach for SEM (with correct inference)
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two-step estimation
* procedure:

step la: estimate the measurement models for Y

— step 1b: estimate the measurement models for X

— step 2: keeping the parameters of the measurement models fixed to
their estimated values, estimate the remaining parameter of the struc-
tural part (3)

— adjust the standard error(s) of the structural parameters, taking the un-
certainty of the first step(s) into account (based on pseudo-ML litera-
ture, see Gong & Samaniego, 1981)

* the first steps could be done with any SEM software; for the standard errors,
you need custom software

— anew function called t wostep has been added to lavaan (0.6)
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two-step estimation in lavaan

> fit.twostep <- twostep(model, data = Data)

> parameterEstimates (fit.twostep, add.attributes = TRUE,

Parameter Estimates:

Information Expected
Information saturated (hl) model Structured
Standard Errors External

Latent Variables:

Estimate

v ="
yl 1.000
y2 0.800
y3 0.600

X =~
x1 1.000
x2 0.800
x3 0.600

Regressions:

Estimate

v -
X 0.250

Std.Err z-value P(>|z])

0.167 4.790 0.000
0.126 4.772 0.000
0.176 4.545 0.000
0.132 4.545 0.000

Std.Err z-value P(>|z])

0.113 2.208 0.027

FALSE) [1:7,]
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factor score regression (‘fsr’)
 simple idea: replace each latent variable by factor scores
* create a new dataset containing those factor scores
* run a regression analysis (or path analysis) using those factor scores
* widely used in practice
* problems:

— we treat the factor scores as if they were observed
— the estimated (structural) parameters will be biased

— statisticians don’t like it, and they will tell applied researchers they
should use SEM
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factor score regression (naive version)

* we replace the latent variables by factor scores:

> fit.Y <- sem('Y =" yl + y2 + y3', data = Data)
> fsY <- lavPredict (fit.Y)

> fit.X <- sem('X =" x1 + x2 + x3', data = Data)
> f£sX <- lavPredict (fit.X)

* we fit a simple regression model using these factor scores:

> fit.fs <- 1Im(fsY ~ f£fsX)
> round (summary (fit.fs) $coefficients[2,], 3)

Estimate Std. Error t value Pr(>|t])
0.170 0.073 2.329 0.021

* bias:

— downward bias for the point estimate (about 32%)

— downward bias for the standard error (about 36%)

* the effect is still significant!
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factor score regression: recent developments

Croon, M. (2002). Using predicted latent scores in general latent structure models. In
Marcoulides, G., Moustaki, I. (Eds.), Latent variable and latent structure modeling (pp.
195-223). Mahwah, NJ: Lawrence Erlbaum.

Hoshino, T., & Bentler, PM. (2013). Bias in factor score regression and a simple solution.
In de Leon, A.R., & Chough, K.C. (Eds.). Analysis of Mixed Data: Methods & Applica-
tions. New York: Chapman and Hall/CRC

Devlieger, 1., Mayer, A., & Rosseel, Y. (2016). Hypothesis testing using factor score regres-
sion: A comparison of four methods. Educational and Psychological Measurement, 76,
741-770.

Devlieger, 1., & Rosseel, Y. (2017). Factor Score Path Analysis. Methodology, 13, 31-38.

Takane, Y., & Hwang, H. (2017). Comparisons among several consistent estimators of
structural equation models. Behaviormetrika (online preprint)
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factor score regression in lavaan

* in lavaan (0.6), factor score regression can be done with the function fsr ()

* automates the steps required to perform factor score regression (or path anal-
ysis) using Croon’s correction:

> fit.fsr <- fsr(model, data = Data, se = "standard", output = "lavaan")

> parameterEstimates (fit.fsr, add.attributes = TRUE, ci = FALSE) [1,]

Parameter Estimates:

Information Observed
Observed information based on Hessian
Standard Errors Standard
Regressions:

Estimate Std.Err z-value P(>|z])

¥ -
X 0.250 0.071 3.536 0.000

* no bias!

* but standard error is too small
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factor score regression: getting the standard errors right

* an ad-hoc solution was proposed in Devlieger et. al. (2016), but we need a
more general solution
1. the bootstrap

— works very good
— intensive, takes time

2. robust (sandwich type) standard errors
— the standard approach needs a huge ACOV matrix
3. correction for a two-step estimation procedure

— based on the pseudo ML literature (Gong & Samaniego, 1981)
— not trivial to implement in our framework

* work in progress
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advantages of the ‘fsr’ approach

consistent point estimates for the structural part of the model
reduction in model complexity
the ‘fsr’ approach can handle:

— missing values for indicators (factor scores are always complete)

— (in principle) categorical indicators (IRT)

in contrast to ‘system-wide’ estimators (like maximum likelihood) the ‘fsr’
approach is robust against (local) model misspecifications

conceptual: strict distinction between measurement model(s) and structural
model

(almost) no convergence issues
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future plans and challenges

challenge: (analytical) standard errors that perform well in the presence of
missing indicators and/or non-normal (but continuous) indicators

challenge: categorical indicators
challenge: nonlinear/interaction effects (involving latent variables)

challenge: models where the distinction between the measurement part and
the structural part of the model is not clear

solved: extension to multilevel SEM (see talk by Ines on EAM in Jena)
future plans: study the relationship with other related approaches:

consistent PLS

model-implied instrumental variables estimation

two-step approaches
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Thank you!
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