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Abstract. Although the consumption based asset pricing theory appears to be theoreti-

cally superior and more elegant than the beta pricing model, yet in practice the beta pric-

ing model is more widely applied. Indeed, beta pricing models are one of the most widely

adopted tools in financial analysis. They easily allow to handle systematic risk as priced in

financial assets. However, accurately estimating beta-coefficients is not as straightforward

as implicitly suggested by Sharpe’s standard market model, i.e., simply using the ordinary

least-squares (OLS) regression. This is primarily because beta-coefficients cannot gener-

ally be assumed as being stable over time. In order to overcome this deficiency, we present

and apply a non-parametric estimation technique that allows capturing this time effect

and promises both, more reliable estimates than obtained with an OLS-regression as well

as a better manageability compared to the existing econometric approaches dealing with

time-varying beta-coefficients. Estimation results for constant and time varying betas are

presented for portfolios of German industries.

Keywords: systematic risk, time-varying beta-coefficients, non-parametric estimation,

varying-coefficient model



1 Introduction

In the financial literature there are two paradigms used for studying asset
pricing and portfolio decisions. The first paradigm is static and is based
on the traditional capital asset pricing model (CAPM) of Markowitz (1952)
and Sharpe (1964), whereas the second approach is based on intertempo-
ral decisions of economic agents who exhibit well specified preferences for
consumption over time. The latter approach is called consumption based
asset pricing which is well grounded in economic theory. It answers most
asset pricing and portfolio decisions in principle, yet it does not work well
in practice. The latter attempts to tie the stochastic discount factor, crucial
for pricing assets, to preferences and consumption data, but its performance
in practice is rather limited.1

On the other hand, models that use factors for asset pricing are easy
to handle in practice since they are usually obtained in linear form through
linear regressions. The typical example for this is the CAPM where a beta,
as a price for risk, prices the asset and justifies the return from an asset
or portfolio of assets. The CAPM also allows to obtain a discount factor
in linear form from the beta estimations2. If the presumed consumption
based asset pricing model is of special form, for example representing special
preferences then the CAPM represents an equivalent form of asset pricing3.

Apart from the ongoing research on the theoretical relationship of the
CAPM to the consumption based asset pricing model, in practice beta esti-
mates have always been used as a measure of risk in modern finance. They
have contributed to a variety of applications such as testing of asset pric-
ing theories, estimating cost of capital, hedging market exposure as well as
portfolio performance evaluation and thus they are one of the most widely
adopted instruments among practitioners and financial economists in order
to measure and manage risk. Wells (1995, p. 5) nicely summarizes the
significance of beta in just one sentence: “It is one of the few regression
coefficients, simple or otherwise, that people actually pay money to get.”
As a consequence, accuracy in the measurement of the beta-coefficient can
be considered a striking topic.

1For an extensive evaluation of those two theories, see Cochrane (2001, ch. 9) and
Campbell and Cochrane (2000).

2See Cochrane (2001, chs. 6 and 9).
3See Cochrane (2001, ch. 9).

1



During the last three decades numerous studies have addressed the ques-
tion of beta’s stability over time. Among the most prominent studies are
Blume (1971), Baesel (1971), Altman, Jacquillat, and Levasseur (1974),
Roenfeldt, Griepentrong, and Pflaum (1978), Alexander and Chervany (1980)
and Theobald (1981). What they share in common is the observation that
beta-coefficients are far from being stable. Despite this general consensus,
still the most widely adopted approach for estimating beta is the ordinary
least-squares regression. In its simplest form it is often based on the follow-
ing model framework, known as the market model :

Rj = αj + βjRM + εj (1)

with Rj and RM denoting the holding period excess return on the jth secu-
rity and on the overall market M , respectively4. The parameter αj depicts
the security’s expected return if the market is neutral, i.e., if RM = 0, and
εj quantifies changes in the holding period excess return due to changes that
are exclusively firm-specific. The beta-coefficient is, of course, depicted by
βj and assesses the impact of movements in the market on the jth security.
However, such an approach assumes constant coefficients and in the con-
text of time-varying betas it is likely to produce inconsistent results. One
reason for its prevailing use might be due to the fact that its usage is rela-
tively straightforward and that the existing econometric alternatives, which
promise more accurate estimates, are much harder to pursue. Among those
econometric alternatives the most widely adopted approach is to estimate
beta as a time-series process using the Kalman filter. In this respect, the
time-path of beta is commonly modelled as a process which relates today’s
beta value either to its overall mean or to last periods’ beta values5.

The remainder of this paper concentrates on a fundamentally different
approach: Using a non-parametric estimation technique, we treat the beta-
coefficient as an unspecified function of time. The estimation results which
are based on daily data of industry replicating portfolios for the German
stock market between 1992 and 2003 support our approach as a useful and
especially easy accessible compromise in the environment of estimating time-
varying beta-coefficients. Moreover, the results do not only confirm the

4The holding period excess return depicts the holding period return in excess of the
risk-free rate rf .

5See Schaefer, Brealey, Hodges, and Thomas (1975)
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general hypothesis of non-constant betas but they also suggest a counter-
cyclical behavior of several industry groups’ beta-coefficients with respect
to the state of the market. On average, betas tend to be significantly larger
in bear-markets than in bull-markets for these industry groups. Hence,
market phases can be considered a driving force for the variability of beta-
coefficients.

The paper is structured as follows: Chapter 2 introduces the non-parametric
approach for estimating time-varying beta-coefficients. Chapter 3 then pro-
vides a overview of the data before discussing the main results. Chapter 4
finally draws the main conclusions.

2 A Non-Parametric Estimation Approach

Essentially, the starting point of the non-parametric estimation approach is
to generalize the market model (1) by including a component which accounts
for the time-variation in the beta-coefficient. The “generalized” market
model is given by

Rjt = αj + βjRMt + β̃j(t)RMt + εjt (2)

with β̃j(t) capturing the time-effect embedded in the systematic risk com-
ponent of the jth security. Apparently, coefficients βj and β̃j(t) in (2) are
not identifiable unless we impose

∫
β̃j(t)dt = 0. In this respect, the para-

metric beta-estimate can be regarded as the mean value of beta for the
whole period under consideration. Thus, dependent on the time-period it
is additively increased or decreased by the estimate of its non-parametric
counterpart. In other words, the estimated beta-coefficient in period k is
given by β̂k = β̂ + ˆ̃

β(k).
In the context of the non-parametric estimation literature, a model of this

form is known as a varying-coefficient model6. The main idea of a varying-
coefficient model is to provide a framework in which the influence of the
predictor variables on the response variable is linear while the corresponding
coefficients are no longer treated as constants but rather as functions of
other variables. In particular, β̃j(t) expresses the multiplicative interaction
or temporal changes, respectively, of the influence of RMt.

6The varying-coefficient model was first proposed by Hastie and Tibshirani (1993).
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A varying-coefficient model as in (2) can be fitted to data by finding the
solution of the following penalized least-squares criterion7

min
αj ,βj

T∑

t=1

(
Rjt − αj − βjRMt − β̃j(t)RMt

)2

+ λj

∫ b

a
β̃′′j (t)2dt. (3)

While the first term measures the goodness of fit, the second term penalizes
the curvature of the function β̃j(.). The so-called smoothing parameter λj

deserves special attention, since it controls the trade-off between bias and
variance of the fit. For λ → 0 the influence of the penalty term disappears
and the resulting function tends to interpolate between the observations.
In contrast, λ → ∞ forces the penalty term to dominate and thus yields a
simple linear regression fit. In this respect, Wood (2000) has proposed an
algorithm which “automatically” determines an “optimal” level of smooth-
ing. This algorithm is provided as the function gam() in the package mgcv

of the (public domain) statistical software environment R. The appropriate
R-commands can be found in Appendix A.

In (2) we have not said much about the structure of the residuals εjt.
The natural assumption of homoscedasticity is likely to be too simplistic
and two potential violations spring in our mind: First, residuals can be
correlated and secondly, the residual variance can change over time. In the
first case, the automatic smoothing parameter selection method by Wood
(2000) would fail in the presence of autocorrelated errors. In such a case,
the smoothing parameter should be determined by hand or by other more
elaborated methods suggested in the paper by Opsomer, Wang, and Yang
(2001). In the data example at hand autocorrelation was not observable,
based on both, a graphical investigation and the Durbin Watson statistics.

In contrast, we found clear indication of heteroscedasticity in the data
after investigation of the fitted residuals based on a first smooth estimate.
Note that homoscedasticity is an integral assumption in the estimation step
as well as when drawing inference from the estimation results. Hence, in
the case of heteroscedastic residuals the estimation approach as described
above does not necessarily guarantee reliable or at least efficient estimates.
We cope with heteroscedastic residuals by pursuing a two-step estimation
approach: The first step is to determine the squared residuals from the

7A technical introduction into a fitting mechanism of this kind for a varying-coefficient
model can be found in Appendix C.
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estimation results of model (2) by assuming (working) homoscedasticity.
This yields working residuals defined through

ε̂jt = (Rjt − R̂jt)2. (4)

A simple exploratory investigation is available by plotting ε̂2
jt against t.

Heteroscedasticity is now visualized by the structure in the plot. In a non-
parametric and flexible way we can model dependence of residual variation
on time with a generalized additive gamma model. This is accommodated
by modelling the squared residuals as

µ2
jt = V ar(ε2

jt) = E(ε2
jt) = g{αj + fj(t)} (5)

where fj(.) is a smooth but otherwise unspecified non-parametric function
and g(.) is called the inverse link function. Based on a gamma model we
choose g−1(µ) = −1/µ.8 The major idea behind the gamma model is, that
the variance of ε2

jt is proportional to µ4
jt and with fj(t) = constant = 0 a

homoscedastic (normal residual) model results. Hence, fj(t) captures the
heteroscedasticity over time. Model (5) falls also in the class of models
which can be fitted with the gam(.) procedure in R as demonstrated in the
appendix. In particular, model (5) can be regarded as a special case of the
family of generalized additive models, which themselves are a generalization
of additive regression models9. The scedasticity-structure estimated by the
gamma-model can now be used to refit model (2) in a weighted manner
which implicitly accounts for heteroscedasticity. Let therefore ωjt = 1/µ2

jt

be weights constructed from the fitted model (5). These weights are now
used to fit model (2) in a weighted form. In practice, this can be pursued
by inserting weights in the fitting routine, as it is implemented in the so far
used R software. More details are found in Appendix A.

8See McCullagh and Nelder (1989).
9See Hastie and Tibshirani (1990). While additive models linearly associate the re-

sponse variable with an additive sum of (non-parametric) functions of the predictor vari-
ables, generalized additive models allow the response variable to depend on the additive
predictor through a nonlinear relationship.
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3 Data and Results

3.1 The Data

In this section we want to demonstrate the potentials of the non-parametric
estimation approach by applying the model to a variety of industry groups
based on data from the German stock market.

The data used are daily observations from April 1991 to March 2003. In
its original form, it comprises stock prices for a range of selected companies
with listed securities at the German stock market as well as observations
on the CDAX performance index. The data are from the Reuters 3000 Xtra

database. Concerning the risk-free rate in the market model we use overnight
money market rates obtained from the German Bundesbank10.

The following seven industry groups will be regarded in the analysis11:
Automobile, Banks, Consumer, Industrial, Retail, Pharma & Healthcare
and Utilities. The most obvious and, of course, the most accurate way to
refer to these industry groups would be to consider several industry-specific
stock market indexes. However, due to lacking data, the approach pur-
sued in this analysis is to construct industry-replicating portfolios containing
major companies of the specific lines of business based on a capitalization
weighting method12. This approach is justified by the fact that companies
within an industry group can be assumed to share several common char-
acteristics such as their sensitivity to business cycles, international tariffs,
technological development or raw material availability. Hence, the beta-risk
of an industry-replicating portfolio approximates the beta-risk borne by the
whole industry.

The stock prices were converted to discrete rates of return13. In the
context of this analysis, discrete returns are preferable over continuously
compounded returns since they retain the property of additivity within port-
folios.

As suggested by the market model, a broad market index should be used
in order to approximate the effects of common macroeconomic events. For
the German stock market, the CDAX performance index can be regarded as

10Data-code: ST0101
11The industry groups are defined corresponding to the sector indexes of the prime

segment as described in Deutsche Börse Group (2003).
12Table B.3 in appendix B provides a summary of the companies included in the analysis.
13Dividend payments can be disregarded, since the focus is on daily returns.
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an adequate proxy for the common macro factor. Strictly speaking, it con-
tains all domestic listings of the stock market segments Prime Standard and
General Standard. These segments represent the entire range of both do-
mestic and foreign securities listed at the German stock market. In analogy
to the stock prices, the index data was also converted to discrete returns.

The overnight money market rates, taken as a proxy for the risk-free
rate in the market model, are quoted as annual rates of return based on the
act/360 standard. This method annualizes the rates of return assuming a
360-day year. Thus, in order to obtain daily rates the annual yields were
simply divided by 360.

3.2 Empirical Results

As outlined above, the non-parametric estimation results based on the gen-
eralized market model (2) can only be considered reliable as long as the
residuals are neither autocorrelated nor heteroscedastic: Figure B.4 shows
the autocorrelation function of the fitted residuals in the different industry
groups, with model (2) fitted under the assumption of uncorrelated errors.
Apparently, there is no indication of autocorrelation which is also shown in
the Durbin Watson statistics provided in Table B.4. Contrary, when look-
ing for homoscedasticity Figure B.5 with fitted residuals ε̂2

jt plotted against
time clearly gives the impression that the validity of homoscedasticity is
questionable. For this reason, the two-step estimation routine as suggested
in the previous section will be pursued.

The weighted estimation diagnostics for the various industry groups are
reported in Table 3.1. As seen, both the parametric estimates reflecting the
mean value of systematic risk for the whole period under consideration as
well as the smooth terms are statistically significant at the 99%-level for each
industry group. The mean value of systematic risk of the industry groups
“Automobile” and “Banks” is close to unity, implying that, on average,
these groups are affected by macroeconomic events to the same extent as
the average market. In contrast, all other groups are less responsive to
overall market movements. The smallest parametric beta-estimate of only
0.55606 can be observed for the “Pharma & Healthcare” industry portfolio.
Interestingly, on average there is no industry group that “overreacts” to
macroeconomic events, meaning that its parametric beta-estimate turns out
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Industry Group Parametric Term Smooth Term

Coeff. Std.Error P-Value EDF P-Value

Automobile 0.98661 0.02348 < 0.001 16.71 < 0.001

Banks 0.93439 0.02079 < 0.001 14.55 < 0.001

Consumer 0.59742 0.02441 < 0.001 6.18 < 0.001

Industrial 0.77839 0.02119 < 0.001 15.45 < 0.001

Retail 0.67999 0.02279 < 0.001 4.37 0.0016

Pharma & H. 0.55606 0.02332 < 0.001 4.32 < 0.001

Utilities 0.73886 0.02155 < 0.001 15.95 < 0.001

Table 3.1: Weighted estimation results for the different industry groups

to be greater than one.
However, as illustrated in Figure 3.1, the estimated beta-coefficients are

far from being stable over time and significantly deviate from their respective
mean values, especially during the period of 1996 – 2002. To be more precise,
the estimation results roughly subdivide the industry groups into two classes
as far as the volatility of the time-path of systematic risk is concerned:

One class comprises the industry groups “Automobile”, “Banks”, “In-
dustrial” and “Utilities” with each having a (comparably) highly volatile
beta-coefficient. In contrast, the various beta-coefficients of the industry
groups “Consumer”, “Retail” as well as “Pharma & Healthcare” are exposed
to a comparably small degree of time-variation. Strictly speaking, the esti-
mated beta-paths “smoothly” decrease over time with troughs around the
years 2000 and 2001.

Especially for the industry groups with highly volatile beta-coefficients, a
relationship between the time-path of systematic risk and the overall market
conditions can be seen. Figure 3.2 captures the return on the CDAX as a
smooth function of time14. Denoting periods of average returns greater than
zero as up- or bull markets, and periods of average returns smaller than
zero as down- or bear markets, the following pattern can be observed: For
these industry groups beta-coefficients tend to move counter-cyclically with
respect to the state of the market: on average, the respective beta-coefficients
are large in bear markets and small in bull markets. This also means that
investors focussing on these groups receive a higher risk-premium in periods
of substantial downside variation than in periods of upside variation.

More precisely, during the bearish market phases A, C and E as de-
14The smooth function is based on an estimated gam-model of the form rMt = f(t)+ εt

using 14 degrees of freedom.
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Figure 3.1: Estimated time-paths of βj + β̃j(t) for the various industry groups
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Figure 3.2: Trend of the returns on the CDAX performance index

picted in Figure 3.2, the respective beta-coefficients of the industry groups
“Automobile”, “Banks”, “Industrial” and “Utilities” are large or, at least,
exhibit an upward trend. Conversely, the bullish market phases B and D
are associated with smaller beta-coefficients as far as these industry groups
are concerned.

3.3 Focussed Estimates

In order to cross-validate the suggested counter-cyclical behavior of beta
for these industry groups, it seems helpful to focus on a reduced data-range.
This is advisable since the estimation results are based on “global” concepts,
that is to say smoothness is refined to as smoothness over the full range of
time15. As a consequence, local structures might be appropriately exhib-
ited. Hence, we subsequently concentrate on a reduced estimation interval
covering the market phases C, D and E as denoted in Figure 3.2.

Considering the various time-paths of systematic risk for the industry
groups “Automobile”, “Banks”, “Industrial” and “Utilities” in the reduced
estimation interval in Figure 3.3, the suggested counter-cyclical behavior of
the beta-coefficient becomes even more evident. All of them exhibit a small
or at least decreasing beta-coefficient during the bullish market phase D and
a large or increasing beta-coefficient during the bear market environments
C and E, respectively. Thus, the estimation results based on the reduced

15Spline smoothing in contrast to local smoothing is a global optimization problem. See
Hastie and Tibshirani (1990)

10



sample support the suggestion of a counter-cyclical behavior of the beta-
coefficient for these industries.
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Figure 3.3: Estimated time-paths of βj + β̃j(t) between 1998 and 2003

Of course, since the beta-coefficient of the market (portfolio) is, by def-
inition, equal to one, there must also be some industry groups that exhibit
the exact opposite behavior. However, as far as our industry sample is
concerned, there is no evidence that such industry groups are included.

3.4 Performance Comparison

Finally, one aspect remains worth addressing: Even though the non-
parametric estimates as presented so far reveal several “neat” results and in-
sights into the time-path of systematic risk and thus indirectly acknowledge
the non-parametrical estimation technique as a useful tool for estimating
beta-coefficients, the real gains in estimation accuracy still remain to be
unknown. Therefore, this section aims to quantify the realized gains in esti-
mation accuracy by measuring the improvements in fit over the conventional
ordinary least-squares approach for constant beta-estimates. Generally, two
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measures should be compared: first, the adjusted R2 as a measure of over-
all fit, and secondly the Generalized Cross Validation (GCV)-criterion. The
GCV-criterion approximates the mean-squared error and hence accounts for
both bias and variance of an estimate. The objective is to reduce the GCV
function16.

The results are reported in Table 3.2. Overall, they show gains in accu-
racy for each industry group in terms of a higher R2 and lower GCV-score
when beta is allowed to vary. As expected, the largest improvements can be
observed for those industry groups whose betas are exposed to a high de-
gree of time-variation, especially for the industries “Automobile”, “Banks”
and “Utilities”. Thus, the non-parametric estimation technique as applied
in this analysis can be considered a useful tool for estimating time-varying
beta-coefficients. Moreover, it provides a comprehensible alternative com-
pared to the existing time-series approaches for these estimation purposes.

Industry Group Constant Beta Time-Varying Beta

R2(adj) GCV R2(adj) GCV

Automobile 0.525 1.03230 0.564 0.97797

Banks 0.550 1.04040 0.583 0.98471

Consumer 0.202 1.01920 0.225 0.99640

Industrial 0.377 1.01440 0.391 0.99495

Retail 0.278 0.99793 0.284 0.99398

Pharma & H. 0.210 0.99891 0.215 0.99100

Utilities 0.320 1.01610 0.341 0.99893

Table 3.2: Performance comparison between constant and time-varying beta-
estimates

4 Conclusion

Our empirical results reveal that the German stock market exhibits symp-
toms of time-varying beta-coefficients. This insight is in accordance with
previous studies that have found evidence of beta-instability in various other
countries. However, this study differs from preceding research in the method
applied in order to estimate the time-path of beta. While most studies have
estimated beta as a time-series process using the Kalman filter, we focus on a
non-parametric estimation technique that allows to treat the beta-coefficient

16See also Appendix C.
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as an unspecified function of time. Compared to the existing time-series
models, such an approach is not only more intuitive and thus quite easy to
understand, the corresponding model can also be fitted to data in a com-
fortable manner, as shown in Appendix A. Moreover, heteroscedasticity is
easily accommodated in the same model framework.

Due to the flexibility of the model by treating the beta-coefficient as
an unspecified function of time, we were able to identify several industry
groups as being counter-cyclically related to the state of the market as far
as their systematic risk exposure is concerned: on average, betas tend to
be significantly larger in bear-markets than in bull-markets for the groups
“Automobile”, “Banks”, “Industrial” as well as “Utilities”.

With respect to the importance of the beta-coefficient in modern fi-
nance, the results of this paper might be helpful in two regards. On the one
hand, non-parametric estimation techniques whose real strengths are still
underrated in many economic disciplines are shown to provide a potential
alternative to the more complicated time-series approaches for estimating
time-varying beta-coefficients. On the other hand, the empirical analysis
reveals significant insight into the time-path of systematic risk for a variety
of industry groups at the German stock market. Among the most important
finding is the counter-cyclical behavior of some industry groups’ beta coeffi-
cients with respect to the state of the market. For instance, with knowledge
of this kind beta-predictions could simply be used to adjust for the expec-
tations of future market conditions.
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A R-Commands

Software package R is an open source software which can be downloaded
free of charge from http://www.r-project.org. The routines used in this
paper are implemented in the mgcv package also available from the above
web page. A general overview about the features of R is found for instance
in Dalgaard (2002).

The generalized market model (2) can be estimated using the following
R-command:

> gam(Rj ∼ RM + s(t, by=RM))

The by-argument ensures that the smooth function β̃j(t) gets multiplied by
the predictor RMt. The formula further indicates that the estimated time-
path of the beta-coefficient is represented by a constant plus a smooth ef-
fect. This is because the individual smooth functions in a varying-coefficient
model have to be constrained to have zero mean. Otherwise the effects of
the covariates would not be identifiable. Since mgcv’s gam() automatically
accounts for this constraint, regardless of the number of covariates in the
model, the resulting smooth functions are centered around zero. However,
for model (2) this means that the estimate of the whole term βj(t)RMt is
centered around zero, even though its “actual” mean value might differ from
zero. Therefore, the term RMt must be included as well whose parametric es-
timate can be regarded as the mean value of beta for the whole period under
consideration. Thus, depending on the time period the smooth component
either increases or reduces the estimated mean value of the beta-coefficient.

A.1 Autocorrelated Residuals

One way to cope with autocorrelated residuals would be to determine the
smoothing parameter by hand. In such a case, the appropriate gam()-
formula is as follows:

> gam(Rj ∼ RM + s(t, by=RM, knots|f))

The parameter knots must be replaced by the desired number of knots: the
more knots are placed the more flexible the fit becomes and vice versa.

14



A.2 Heteroscedasticity

The two-step estimation approach for coping with heteroscedastic residuals
first requires to fit the generalized additive gamma model (5). In R this can
be done using the following command:

> gam(r.squared ∼ s(t), family=Gamma)

with the family-argument specifying the desired response probability dis-
tribution. After having constructed the appropriate weights, the weighted
market model can be fitted to data by:

> gam(Rj ∼ RM + s(t, by=RM), weights=wj)

with the weights-argument ensuring to incorporate the vector of the con-
structed weights wjt.
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B Data Summary and Estimation Diagnostics

Company 1st Obs. Company 1st Obs.

Automobile Banks

Volkswagen AG 04/1991 Bayer. H.- und Vereinsbank AG 04/1991

Daimler Chrysler AG 04/1991 Commerzbank AG 04/1991

BMW AG 03/1993 Deutsche Bank AG 04/1991

Continental AG 03/1993 IKB Dt. Industriebank AG 01/1996

Consumer Retail

Adidas-Salomon AG 11/1995 Celesio AG 01/1996

Henkel KGaA 03/1993 Douglas Holding AG 04/1995

Wella AG 01/1996 Fielmann AG 01/1996

Beiersdorf AG 11/1996 Karstadt Quelle AG 04/1991

Puma AG 07/1996 Metro AG 07/1998

Pharma & Healthcare Industrial

Altana AG 05/1996 Deutz AG 11/1992

Fresenius Medical Care AG 10/1996 Linde AG 04/1991

Schering AG 06/1991 MAN AG 04/1991

Merck KGaA 10/1995 Rheinmetall AG 03/1998

Schwarz Pharma AG 02/1996 MG Technologies AG 10/1992

Thyssen Krupp AG 04/1991

Utilities IWKA AG 08/1996

E.ON AG 03/1993 Jenoptik AG 10/1998

RWE AG 04/1991

Table B.3: Companies included in the analysis with dates of their first observation

Industry Group DW-statistic

Automobile 2.0167

Banks 2.0758

Consumer 2.1880

Industrial 2.0186

Retail 2.0102

Pharma & Healthcare 1.9751

Utilities 1.9457

Table B.4: Durbin Watson statistics for the various industry groups.
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Figure B.4: Unweighted estimation: ACF for the various industry groups.
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Figure B.5: Unweighted estimation: Residuals for the various industry groups.
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Figure B.6: Two-step weighted estimation: Residuals for the various industry
groups.
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C Theoretical Notes on the Varying-Coefficient Model

It can be shown (see e.g. De Boor (1978, ch. 4)) that a weighted version of
the minimization problem (3) can be written as

(Y −Xβ −Cb)T W (Y −Xβ −Cb) + λbTDb. (6)

with Y = (Rj1, . . . , RjT )T , X = (1, RM ) and RM = (RM1, . . . , RMT ).
Matrix C is a n× p dimensional spline basis built from rows

Ct = RMt(B1(t), . . . , Bp(t)), t = 1, . . . , T

with Bl(t) as l-th spline basis. Finally, W = diag(wjt) is the diagonal
matrix of weights accounting for heteroscedasticity andD is a penalty matrix
steering with λ the smoothness of the resulting fit. Additional constraints
on b are necessary to ensure identifiability, but for notational simplicity and
since technically these do not cause problems we ignore them here (see Wood
(2000) for a more technical insight). Keeping the smoothing parameter λ

fixed, one gets an estimate for Θ = (β, b) via

Θ̂ =

((
XT

CT

)
W (XC) + λdiag(0,D)

)−1 (
XT

CT

)
WY

=: MλY

Note that if weights wjt depend on Θ as well, iterated estimation is necessary.
In our fitting process we however confine ourselves to a two stage fitting
routine only.

An important issue in non-parametric regression is the selection of an
appropriate smoothing parameter. Choosing λ = 0 results in a wiggled es-
timate while λ →∞ would yield a time constant beta-coefficient. A widely
accepted method for smoothing parameter selection (see Hastie and Tibshi-
rani (1990)) is minimizing Akaike’s information criterion (Akaike (1973)) or
its relative the Generalized Cross Validation (Craven and Wahba (1979))

GCV (λ) =
(Y −Xβ −Cb)T W (Y −Xβ −Cb) /T

[1− df(λ)/n]2

where df(λ) is a measure for the degree of freedom or for the complexity
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of the fit, respectively. As motivated for instance in Hastie and Tibshirani
(1990, ch. 3) a suitable choice for df(λ) is the trace of the ”hat” matrix,
which here means

df(λ) = trace {Mλ(XC)}

Clearly, GCV (λ) does not allow for simple minimization, since ∂GCV (λ)/∂λ =
0 does not provide an analytic solution. However, the simple idea of a New-
ton Raphson procedure can be applied to solve the first order derivative.
Details are provided in Wood (2000) and the procedure is implemented in
R.

When working with any automatic smoothing parameter selection one
should be aware that the routines usually have a large variability. In practi-
cal terms this means, one should not blindly believe in the selected smooth-
ing parameter and take the resulting fit for granted. Instead, one should
visually check the fit with different smoothing parameters. If differences
are minor, the automatic selected smoothing parameter can be accepted17.
We followed this advice in our data example and found that the automatic
selected smoothing parameters behaved satisfactory.

17See also Ruppert, Wand, and Carroll (2003b, ch. 5.4).
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