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Abstract

This paper, following the line of research by Feichtinger, Hartl,

Kort and Wirl (2001), henceforth FHKW (2001), studies history de-

pendence and hysteresis e�ects of an investment model with relative

adjustment cost. As in FHKW (2001) we study the existence of equi-

libria in concave and non-concave domains and the local stability prop-

erties of the equilibria. In contrast to FHKW (2001) by using the

Hamiltonian-Jacobi-Bellman (HJB) equation we can study the global

dynamics and thresholds which separate di�erent domains of attrac-

tion. A numerical procedure derived from the HJB equation permits

to locate those thresholds and to explore the global dynamics. The

important implication of our paper is that in the standard investment

model of the �rm there will be appear history dependence and hys-

teresis e�ects if relative adjustment costs are admitted.
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discussions and communications. We, in particular, want to thank Lars Gr�une for his

help on the numerical part of the paper, Section 4, which was undertaken by a dynamic

programming algorithm developed by Gr�une (1997).
yDept. of Economics, New School University, New York,
z Center for Empirical Macroeconomics, University of Bielefeld, Germany and New School

University, New York.
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1 Introduction

Multiple equilibria have been found in many dynamic economic models. Mu-

tiple equilibria give rise to history dependence and hysteresis e�ects. The

property of history dependence comes about if solutions of dynamic systems

can converge, depending on the initial conditions, toward distinct attractors.

The existence of two or more stable steady states implies the existence of

at least one unstable steady state. Moreover, the existence of optimal tra-

jectories towards the one or the other attractor implies the existence of an

optimal set of points, called thresholds or Skiba-points, at which one is in-

di�erent between converging toward the one or the other stable steady state.

One of the simplest models which leads to multiple equilibria is based on a

convex-concave production function. The article by Skiba (1978) is a seminal

paper on multiple equilibria in the literature on economic development. He

uses a convex-concave production function which possesses increasing returns

to scale at an early stage of economic development and diminishing returns

at a later stage. This gives a threshold, or a Skiba point, in a one state

variable dynamic model.

In a recent survey paper by Deissenberg, Feichtinger, Semmler and Wirl

(2001) it is shown that in many areas of economics dynamic optimization

problems with multiple equilibria arise. They also pointed out the less known

facts that multiple equilibria and history dependence are possible in the

concave domain and the unstable steady states are not necessarily optimal

and do not always coincide with the thresholds.

The current paper, following the work by Feichtinger, Hartl, Kort and

Wirl (2001), studies history dependence and hysteresis e�ects in an invest-

ment model with adjustment costs. Investment models with absolute ad-

justment costs have been studied in the work by Eisner and Stroz (1963),

Lucas (1967), Gould (1968) and Mortenson (1973). Models with relative

adjustment costs can be found in Uzawa (1968, 1969), Hayashi (1982) and

D'Autume and Michel (1985). The latter type of models frequently imply

the existence of multiple equilibria and history dependence.

We also study a dynamic decision problem of investment by a �rm. We

follow Feichtinger, Hartl, Kort and Wirl (2001), henceforth FHKW (2001),

who have presented a dynamic investment model with relative adjustment

costs and solve this model by using Pontryagin's maximum principle and the

associated Hamiltonian. They, however, cannot exactly locate the threshold

using their method. We solve the model by using the Hamiltonian-Jacobi-

Bellman (HJB)-equation, can locate the threshold and study the global dy-

namics.

The remainder of the paper is organized as follows. Section 2 presents
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the FHKW (2001) model. Section 3 shows the existence of concave-non-

concave domains of the model. Section 4 studies the global dynamics of the

model employing the HJB-equation. Thresholds are obtained by numerical

methods. Section 5 concludes the paper.

2 Relative Adjustment Costs and Multiple

Equilibria

FHKW (2001) study a dynamic investment model and investigate a number

of interesting properties when agents face relative adjustment costs. There

are not only multiple equilibria but also equilibria within the concave domain.

Their model can be summarized as follows:

max
fu(t)g

Z 1

0

exp(�rt)[U(x(t) � C(u(t)=x(t))]dt (1)

s.t.

_x(t) = u(t)� Æx(t); x(0) = x0 (2)

The capital stock x generates a concave pay-o�, U , and C denotes the

adjustment costs depending on the investment to capital stock ratio. This

cost function is not jointly convex, although it is convex in u and x separately.

This can be veri�ed by the negative of the determinant of the Hessian matrix

X.

X =

�
C

00

(u
x
)u

2

x4
+ C

0

(u
x
)2xu
x4

� 1
x2
[C

00

(u
x
)u
x
+ C

0

(u
x
)]

� 1
x2
[C"(u

x
)u
x
+ C

0

(u
x
)] C

00

(u
x
) 1
x2

�
(3)

det j X j= �
�
C

0

(u=x)

x2

�2
< 0 (4)

As a consequence, the integrand function (U � C) and the associated

Hamiltonian need not be concave in particular around small steady states.

The possible existence of both concave and non-concave domains leads to

multiple equilibria. Yet one of their interesting �ndings is that neither the

existence of multiple equilibria nor the potential instability and the associated

threshold property require non-concavity.

The current value HamiltonianH, using � to denote the co-state variable

of x, is

H = U(x)� C

�
u

x

�
+ �(u� Æx): (5)

The �rst order conditions for interior solutions are
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Hu = �C
0

x
+ � = 0 (6)

_� = (r + Æ)� U
0 � C

0 u

x2
: (7)

The second order necessary condition for optimality, the so-called Legendre-

Clebsch condition, is satis�ed if

Huu = �C
00

x2
= �Cuu < 0: (8)

The necessary condition is suÆcient if the Hamiltonian is concave in (u; x)

(the Mangasarian suÆciency theorem)1 or the maximized Hamiltonian is

concave in X (the Arrow suÆciency theorem). Since the analysis is restricted

to the necessary conditions, a slight vagueness remains on the optimality of

the paths characterized in the non-concave domain.

From the maximum principle (6),

u
� = u(x; �); (9)

where, introducing � =
(u=x)C

00

C
0 , the elasticity of marginal costs, gives

ux =
u

x

(1 + �)

�
(10)

u� =
x
2

C
00

(u=x)
: (11)

At a steady state, _x = u� Æx = 0 or u=x = Æ, thus (10) becomes

ux =
Æ(1 + �)

�
: (12)

Substituting (9) into (2) and (7) yields the canonical equations in (x; �):

1Consider the following problem:

maxV =

Z
1

0

F (t; u; x)dt

s.t.

_x = f(t; u; x) x(0) = x0:

In this version suÆciency holds if both the F and f functions are di�erentiable and

concave in the variables (u; x) jointly, and for the optimal solution it is true that �(t) � 0

for all t if f is nonlinear in u or in x.
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_x = u(x; �)� Æx (13)

_� = (r + Æ)�� U
0

(x)� C
0

�
u(x; �)

x

�
u(x; �)

x2
: (14)

The Jacobian J , associated with the canonical equations (13) and (14)

evaluated at a steady state, and its determinant are given by

J =

"
Æ

�

x2

C
00

� C
0
2

C
00

x2
� U

00

r � Æ

�

#
(15)

det j J j= rÆ

�
+
x
2
U

00

C
00
: (16)

The sign of det j J j is ambiguous. The last term of det j J j is de�nitely
negative due to the concavity of U . Therefore, no depreciation, Æ = 0,

guarantees a stable steady state. For higher r and Æ or lower �; the det j J j
increases and thus the possibility of instability rises.

Taking this model by FHKW (2001) we solve it by using both the maximum

principle and the HJB-equation in order to study thresholds and history

dependence.

max
fu(t)g

Z 1

0

exp(�rt)[U(x(t)) � C(u(t)=x(t))]dt (17)

s.t.

_x(t) = u(t)� Æx(t); x(0) = x0 (18)

with the following speci�cations:

C(z) =
1

2
cz

2 =
1

2
c

�
u

x

�2
(19)

U(x) = x� 1

2
x
2
: (20)

where we employ a linear-quadratic pay-o� function and a quadratic ad-

justment costs function.

The current value Hamiltonian H is

H = x� 1

2
x
2 � 1

2
c

�
u

x

�2
+ �(u� Æx): (21)

The �rst order conditions for interior solutions are

Hu = �c
�
u

x

�1
x
+ � = 0 (22)
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_� = (r + Æ)�� (1� x)� c

�
u

x

�2 1
x
: (23)

From the maximum principle (22) we can get the optimal investment

policy:

u
� =

�x
2

c
: (24)

Substituting the optimal policy (24) into (23) gives us

_� = (r + Æ)�� (1� x)� �
2
x

c
: (25)

Also substituting (24) into the state equation (15) gives us

_x = x

�
�x

c
� Æ

�
: (26)

Consequently the system is described by the canonical equations (25) and

(26).

By setting _x = 0, and _� = 0, we �nd that this system has three steady

states:

(x1; �1) =

8>>><
>>>:

�
0; 1

r+Æ

�
�
1�pD

2
:
1�pD
2r

�
�
1+
p
D

2
;
1�
p
D

2r

�
:

(27)

Here we assume D � 1 � 4crÆ � 0, otherwise only the �rst and trivial

steady state, x1 = 0, exists.

For the study of phase diagram we need to note that we have two _x = 0

isoclines and three _� = 0 isoclines in the (x; �) plane:

_x = 0; if either

(
x = 0 or

� = cÆ

x

(28)

_� = 0; if � =

(
1

r+Æ
for x = 0

c(r+Æ)�
p

c2(r+Æ)2+4cx(x�1)
2x

for x > 0;
x 2 [0; 1]: (29)

The domain of the _� = 0 isocline is restricted to the states where c(r+ Æ)2 >

4x(1� x) is satis�ed.
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Next, we undertake a stability analysis of system (25)-(26). The Jacobian

of the canonical equations system is given by

J =

�
�Æ + 2�x

c

x2

c

1� �2

c
r + Æ � 2�x

c

�
(30)

Because � = cÆ=x holds for the interior steady states, x > 0; J will be

reduced to

J =

�
Æ

x2

c
x2�cÆ2

x2
r � Æ

�
(31)

while for the boundary steady state, x = 0; � = 1=(r + Æ) holds, and J

will be reduced to

J =

�
�Æ 0

1� 1
(r+Æ)2c

r + Æ

�
: (32)

Thus the determinant of the Jacobian at the three steady state is

det j J j=

8><
>:
�Æ(r + Æ) < 0

Ær � x
2

c
=

(p
D�D
2c

> 0 for x = 0

�
p
D+D
2c

< 0 for x > 0

(33)

Since det j J j< 0 for the smallest (x = 0) and the largest steady states,

these two steady states are locally stable, while the middle steady state is

unstable since det j J j> 0:

3 Concave and Non-Concave Domains

Another interest of the paper of the FHKW (2001) is to study whether the

equilibria fall into concave or non-concave domains. We are especially inter-

ested in the location of the middle unstable steady state. Following FHKW

(2001) we can reveal concavity and non-concavity by checking the determi-

nant of the Hessian of the Hamiltonian at the steady states.

The Hessian matrixA of the Hamiltonian at the two positive steady states

and its determinant are

A =

"
� c

x2
2cu
x3

2cu
x3

�
�
1 + 3cu2

x4

�#
(34)
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det j A j= c

x4

h
x
2 � c

�
u

x

�2i
: (35)

Since _x = u� Æx = 0 or u=x = Æ at the two positive steady states,

det j A j= c

x4
[x2 � cÆ

2]: (36)

The sign of det j A j will be known when we insert the steady state values

of x in (36):

det j A j= 8c[1� 2cÆ(r + Æ)�
p
D]

(1�
p
D)4

(37)

where the positive sign before the root corresponds to the largest steady

state and the negative sign to the middle steady state. From (37), the Hamil-

tonian is concave for any x > Æ
p
c, even if the Jacobian is positive; x <

p
rÆc.

This suggests that examples that couple instability and concavity are easy

to construct if the necessary requirement, r > Æ > 0, is met.

For a low depreciation rate r > Æ, by decreasing the value of c, the mid-

dle steady state moves from the non-concave domain to the concave domain.

Interestingly, the determinant of the Hessian matrix of the Hamiltonian van-

ishes at that point where the domain of the co-state isocline begins to be

restricted. On the other hand, for a high depreciation rate, the middle steady

state is unstable within the non-concave domain and the largest stable steady

state is within the concave domain. It is also noteworthy that the property of

the unstable steady state within the non-concave domain can be an unstable

node.

Let us concentrate more properly on the unstable steady state. Each

steady state, including the unstable one in the concave domain must be a

node, while the unstable steady state in the non-concave domain can be

either a node or a focus. These results show that it is not necessary for

an unstable steady state to be in the non-concave domain, and moreover,

the unstable steady state in the non-concave domain can be a node. This

outcome is, as already FHKW (2001) state, surprising because an extensive

literature on multiple equilibria creates the opposite impression namely that

an instability coupled with a non-concavity implies an unstable focus.

We now check that the unstable steady state in the concave domain must

be a node. Concavity requires that the determinant of the Hessian is positive:

det j A j= 8c[1� 2cÆ(r + Æ)�
p
D]

(1�
p
D)4

> 0; (38)
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which is equivalent to

1� 2cÆ(r + Æ)�
p
D > 0:

Rearranging the latter gives the following condition:

cÆ(r � Æ) >
1

2
(1�

p
D)

p
D: (39)

The stability property depends on the eigenvalues at the unstable steady

state. Recall that the Jacobian of the system evaluated at the interior steady

state is

J =

�
Æ

x
2

c
x
2�cÆ2
x2

r � Æ

�
(40)

and thus the determinant of the Jacobian at the unstable steady state is

det j J j=
p
D �D

2c
> 0: (41)

The characteristic equation of the Jacobian is

�
2 � (a11 + a22)�+ (a11a22 � a12a21) = 0 (42)

where

�(a11 + a22) = �(Æ + r � Æ)

= �r

and

(a11a22 � a12a21) =

p
D �D

2c
:

The characteristic equation, �2 � r�+ (
p
D �D)=2c, is satis�ed for two

values of �:

� =
1

2

h
r �

s
cr2 + 2(D �

p
D)

c

i
: (43)

The supposition of a node requires that two eigenvalues at the unstable

steady state are real, which is equivalent to cr2 + 2(D �
p
D) > 0 or

1

2
(1�

p
D)
p
D <

1

4
cr

2
: (44)
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On the other hand, the supposition of a focus requires two eigenvalues

are complex conjugate, which is equivalent to

1

2
(1�

p
D)
p
D >

1

4
cr

2
: (45)

In addition, it is obvious that2

cÆ(r � Æ) <
1

4
cr

2
: (46)

Consequently, it should be clear that the only possible situation under

the condition where (39) holds, that is where the unstable steady state is in

the concave domain, is

1

2
(1�

p
D)

p
D < cÆ(r � Æ) <

1

4
cr

2
: (47)

It implies that the unstable steady state in the concave domain must be

node. In other words, an unstable focus is impossible in the concave domain.

These results are illustrated by using a numerical example. Let c = 3
2
; r =

1; Æ = 0:1 with the steady states for x: 0, 0.184, 0.816. At the middle

unstable steady state x=0.184 we have

1
2
(1�

p
D)

p
D[= 0:116] < cÆ(r � Æ)[= 0:135] < 1

4
cr

2[= 0:375]

Therefore the unstable steady state in the concave domain must be a node.

In the same way, we can check that the unstable steady state in the non-

concave domain can be not only a focus but also a node. Non-concavity

requires that the determinant of the Hessian is negative.

det j A j= 8c[1� 2cÆ(r + Æ)�
p
D]

(1�
p
D)4

< 0; (48)

which is equivalent to

1� 2cÆ(r + Æ)�
p
D < 0

Rearranging this gives the following condition:

cÆ(r � Æ) <
1

2
(1�

p
D)

p
D: (49)

2Note that 1

4
cr

2 � cÆ(r � Æ) = 1

4
c(r � 2Æ)2 > 0
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From (44), (45) and (46), under the condition where (49) holds, that is where

the unstable steady state is in the non-concave domain, there are two possible

situations:

cÆ(r � Æ) <
1

2
(1�

p
D)

p
D <

1

4
cr

2 (50)

cÆ(r � Æ) <
1

4
cr

2
<

1

2
(1�

p
D)

p
D: (51)

(50) implies that the unstable steady state in the non-concave domain can

be a node, while (51) implies that it can also be a focus. Those outcomes

depend on the parameters of the model. This can be shown with the following

parameters: c = 1; r = 1
4
; Æ = 1

2
. This gives steady states for x: 0, 0.146,

0.854, and the unstable one at x = 0:146:

We thus have

cÆ(r � Æ)[= �0:125] < 1

4
cr

2[= 0:016] <
1

2
(1�

p
D)
p
D[= 0:104]

Therefore this example shows the unstable steady state in the non-concave

domain must be a focus.

4 The Study of the Global Dynamics

The numerical computation of the value function and the global dynamics

follows Semmler (1999) and Semmler and Sieveking (2000). There it is also

shown how the thresholds, or Skiba points, can be computed by using the

HJB-equation.

Employing again the FHKW (2001) investment model with relative ad-

justment cost

max

Z 1

0

e
�rt

f(x; u)dt (52)

s.t.

_x = g(x) = u(x)� Æx(t) (53)

we can de�ne the optimal value function J(t0; x0) as the maximum value

that can be obtained starting at time t0 at state x0:

J(t0; x0) = max

Z 1

0

e
�rt

f(x; u)dt

= e
�rt0max

Z 1

0

e
�r(t�t0)f(x; u)dt (54)
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The value of the integral on the right hand side depends on the initial

state, but is also dependent on the initial time, i.e. it depends on elapsed

time.

Now, let us de�ne

V (x0) = max

Z 1

0

e
�r(t�t0)f(x; u)dt: (55)

Then

J(t; x) = e
�rt

V (x) (56)

Jt = �re�rtV (x) (57)

Jx = e
�rt

V
0

(x): (58)

The HJB-equation is

�Jt(t; x) = max
u

[e�rtf(t; x; u) + Jx(t; x)g(x; u)]: (59)

Substituting (57) and (58) into (59) and multiplying through by ert yields

the basic ordinary di�erential equation:

rV (x) = maxu[f(x; u) + V
0

(x)g(x; u)] (60)

We employ again the model by FHKW (2001) with the following speci�c

functions:

f(x; u) = U(x)� C

�
u

x

�
= x� 1

2
x
2 � 1

2
c

�
u

x

�2
(61)

g(x; u) = u� Æx (62)

Substituting (61) and (62) into (60) gives

rV (x) = maxu[U(x) � C

�
u

x

�
+ V

0

(x)(u� Æx)]: (63)

Next we compute the candidates for steady state equilibria. If e is an equi-

librium,

g(e; u) = u� Æe = 0 (64)

Then
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rV (e) = U(e)� C(Æ) (65)

V
0

(e) =
U

0

(e)

r + Æ
+

C
0

(Æ)Æ

(r + Æ)e
(66)

The equilibrium e satis�es

rV (e) = max
u

[U(e)� C

�
u

e

�
+ V

0

(e)(u� Æe)]; (67)

and substituting (65) and (66) into (67) yields

U(e)� C(Æ) = max
u

h
U(e)� C

�
u

e

�
+
�
U

0

(e)

r + Æ
+

C
0

(Æ)Æ

(r + Æ)e

�
(u� Æe)

i
: (68)

Then solving d

du
[�] = 0

�C
�
u

e

�1
e
+
U

0

(e)

r + Æ
+

C
0

(Æ)Æ

(r + Æ)e
= 0: (69)

From the speci�c function (61),

U
0

(x) = 1� x (70)

C
0

�
u

x

�
= c

�
u

x

�
: (71)

Then the equilibrium condition (69) becomes

�cu
e
(r + Æ) + (1� e)e+ cÆ

2 = 0 (72)

or u =
(1� e)e2

c(r + Æ)
+

Æ
2
e

r + Æ
:

Substituting this condition into the steady-state condition, we obtain three

steady-state equilibria from

_x = u� Æe =
(1� e)e2

c(r + Æ)
+

Æ
2
e

r + Æ
� Æe

= e

h(r � e)e

c(r + Æ)
+

Æ
2

r + Æ
� Æ

i
(73)

= 0:

It implies
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e = 0 orh
(1�e)e
c(r+Æ)

+ Æ2

r+Æ
� Æ

i
= 0, that is e2 � e+ rcÆ = 0:

Thus, the optimal three steady states are

e =

(
0
1�p1�4rcÆ

2
= 1�

p
D

2

(74)

where we assume D � 1� 4rcÆ � 0:

Figure 1 shows the optimal steady states where both of the following condi-

tions, are satis�ed:

u =
1� e

rc
e
2 (75)

u = Æe (76)

Figure 1: Example for parameter set c=1.5, r=1 and Æ=0.1

The second-order necessary condition requires

d
2

du2
[U(e)� C

�
u

e

�
+

1

r
U

0

(e)(u� Æe)] < 0 (77)
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�C"
�
u

e

� 1

e2
< 0: (78)

From the speci�c function (61) we have

C
"
�
u

x

�
= c: (79)

Thus, the condition (64) becomes

� c

e2
< 0: (80)

This second-order necessary condition holds for the two positive optimal

steady states.

The HJB-equation gives

rV (e) = maxu[f(e; u) + V
0

(e)g(e; u)]

= maxu[e�
1

2
e
2 � 1

2
c

�
u

e

�2
+ V

0

(e)(u� Æe)]: (81)

Solving d

du
[e� 1

2
e
2 � 1

2
c

�
u

e

�2
+ V

0

(e)(u� Æe)] = 0 derives

�c
�
u

e

�1
e
+ V

0

(e) = 0 or (82)

u =
e
2

c
V

0

(e):

Substituting (82) into (81) gives

rV (e) = e� 1

2
e
2 +

1

2

e
2

c
V

0

(e)2 � ÆeV
0

(e) (83)

therefore

V
0

(e)2 � 2
cÆ

e
V

0

(e) + 2
c

e
� c� 2

cr

e2
V (e) = 0:

Then we obtain an ordinary di�erential equation in V with the candidates

of steady states as initial conditions:

V
0

(e) =
cÆ

e
�
r�

cÆ

e

�2
�
�
2
c

e
� c� 2

cr

e2
V (e)

�
: (84)

Using the following information for V :
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V
0

(x) =
cÆ

x
�
r�

cÆ

x

�2
�
�
2
c

x
� c� 2

cr

x2
v(x)

�
forx � e (85)

V
0

(x) =
cÆ

x
+

r�
cÆ

x

�2
�
�
2
c

x
� c� 2

cr

x2
V (x)

�
forx < e (86)

V (e) =
1

r
[e� 1

2
e
2 � 1

2
cÆ

2]; (87)

and solving the ODE in V by the Euler method for each e as initial

condition we can compute the global value function for the original problem:

V (x) =MaxV: (88)

Figure 2: Example for parameter set c=1.5, r=1 and Æ=0.1

We can summarize the following results. In case of our revenue function

and the quadratic adjustment costs, we get three steady states. One steady

16



state is unstable which gives rise to a threshold, in the present case where the

unstable steady state falls in the concave domain and is a node the threshold

coincides with the middle, unstable steady state. As above shown for a slow

depreciation process, r > Æ, both positive (unstable and stable) steady states

may fall into the concave domain. Yet, if this is a focus the unstable steady

state and the threshold do not necessarily coincide. For a fast depreciation

process, r < Æ, the unstable steady state is always in the non-concave domain.

Figure 2 shows the value function and the optimal control for the case

of r < Æ. Figure 3 displays the kink in the value function indicating the

threshold, the Skiba point, separating the di�erent domains of attraction.

Figure 3: Example for parameter set c=20, r=0.05 and Æ=0.1

Moreover, �gure 4 shows more clearly how the control variable in the

vicinity of the middle unstable steady state jumps. Given this threshold the

capital stock should be run down for initial conditions below the threshold.

Above the threshold a high level of the state should be approached.

In the appendix, �gure A1, the corresponding phase diagram to the value

function and control variable of �gure 2 are shown. For the parameter con-

stellation of �gure 2 the middle equilibrium is a node. Figures A2 and A3
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of the appendix show the corresponding phase diagrams to �gures 3 and 4

above. Figures 3 and 4 above and �gures A2 and A3 in the appendix repre-

sent the case of a focus of the middle equilibrium. Figure A3 in the appendix

shows the magni�ed region about the middle equilibrium. The value of the

threshold, obtained from our numerical procedure, lies at x = 0:105 and thus

it is located slightly to the left of the middle equilibrium.

Figure 4: Example for parameter set c=20, r=0.05 and Æ=0.1

From a policy point of view, it is important to distinguish an unstable

focus and unstable node, because in the case of a node as shown in Figure 2,

investment is a continuous function of the capital stock level, while in the case

of a focus, as in Figures 3 and 4, the policy function is always discontinuous.
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5 Conclusions

In recent times numerous papers have been published that exhibit multiple

equilibria. Multiple equilibria may lead to thresholds separating di�erent do-

mains of attraction, history dependence and hysteresis e�ects. Yet, detecting

those phenomenon in a given model is cumbersome. Following Feichtinger,

Hartl, Kort and Wirl (2001) in this paper we study an investment model

with relative adjustment costs. This type of model implies the existence of

multiple equilibria and history dependence. FHKW (2001) solve the model

by using Pontryagin's maximum principle and the associated Hamiltonian.

We solve the model by employing the Hamiltonian-Jacobi-Belman (HJB)-

equation. By using the HJB equation we can analytically and numerically

study the global dynamics, thresholds and history dependence. The numeri-

cal procedure that we are using is derived from the HJB equation. It permits

to locate those thresholds and to explore history dependence of the model.

The important implication of our paper is that in the standard investment

model of the �rm there will appear history dependence and hysteresis e�ects

if relative adjustment costs are admitted.
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6 Appendix: Phase Diagrams
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