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Abstract

This paper studies the effects of global warming in a descriptive model of endogenous

growth. It is assumed that deviations from the pre-industrial global surface temperature

negatively affect aggregate output. The paper studies the effects of varying the tax rate

and of different abatement activities on the emission of greenhouse gases and on the

growth rate. We study both effects for the long run balanced growth rate and for the

growth rate of GDP on the transition path. Using simulations, it is demonstrated that

higher abatement activities may both reduce greenhouse gas emissions and lead to higher

growth. Further, the second-best abatement share is computed and the corresponding

growth rate as well as the social optimum.
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Non-Technical Summary

This paper presents a simple descriptive growth model where production leads to emissions

of greenhouse gases (GHGs) which raise the average surface temperature of the earth. The

increase in the average surface temperature, for its part, negatively affects aggregate production.

The model assumes that disposable GDP, i.e. GDP after taxes, is used for investment, for

consumption and for abatement. Consumption is assumed to be a certain share of disposable

GDP and the government can fix how much resources must be spent for abatement in the

economy. Further, it is assumed that investment goes along with positive externalities which

build up a stock of knowledge capital. This brings about constant returns to scale in the

aggregate per capita production function and generates positive per capita growth in the long

run.

The paper, then, studies how variations in the tax rate and in the abatement share affect

economic growth in this economy. This is done for both the model on the transition path

and for the economy on the balanced growth path (BGP). Simulations demonstrate that a tax

policy leading to less GHG emissions may also raise both the balanced growth and the growth

rate of GDP on the transition path (win-win situation). This outcome crucially depends on

the damage caused by the temperature increase. However, such a win-win situation can be

obtained for damages which are considered as realistic.

In a next step, a specialization of the model is presented which gives the so-called AK model

of endogenous growth. For this economy the second-best solution is computed as well as the

social optimum. It turns out that both for the second-best solution and for the social optimum

countries with a more polluting technology should have higher abatement shares compared

to countries with a less polluting technology. Nevertheless, GHG emissions are smaller in

countries with less polluting technologies. This holds because the higher abatement share

cannot compensate for the less clean production technology.



1 Introduction

The emission of greenhouse gases (GHGs), like carbon dioxide (CO2) or methane (CH4), has

drastically increased in the 20th century and still continues to rise leading to higher concentra-

tions of GHGs in the atmosphere. Higher GHG concentrations generate a rise in the average

global surface temperature and make extreme weather events more likely. According to the

Intergovernmental Panel on Climate Change (IPCC) it is very likely1 that the 1990s was the

warmest decade and 1998 the warmest year since 1861 (IPCC, 2001, p. 26). In addition, it is

likely that statistically significant increases in heavy and extreme weather events have occurred

in many mid- and high latitude areas, primarily in the Northern Hemisphere.2

In the economics literature numerous studies analyze the impact of environmental degrada-

tion on economic growth using endogenous growth models (for a survey see e.g. Smulders, 1995,

Hettich, 2000, or Smulders, 2000). Generally, these studies are rather abstract because they

intend to derive general results. It is assumed that economic activities lead to environmental

degradation and, as a consequence, reduce utility and/or production possibilities. The goal of

these studies often is to analyze how public policy affects environmental conditions as well as

the growth rate and welfare of economies.

However, as far as I know there do not exist economic studies which incorporate climate

models in a growth model and study the effects of different time paths of GHG emissions on the

growth rate of economies. Instead, economic studies dealing with global warming are mostly

cost benefit analysis which take the growth rate of economies as an exogenous variable. These

studies then compute the discounted cost of reducing GHG emissions and confront them with

the discounted benefit of a lower increase in GHG concentration and, as a consequence, of a

smaller increase in average global surface temperature (see e.g. Nordhaus, 2000, or Tol, 2001,

and for a survey IPCC, 1996).3

A great problem in studying the economic consequences of global warming is the uncertainty

1Very likely (likely) means that the level of confidence is between 90 − 99 (66 − 90) percent.

2More climate changes are documented in IPCC, 2001, p. 34.

3We do not go into the details of these studies. The interested reader is referred to the IPCC report (see IPCC,

1996).
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as concerns the damages caused by a change of the earth climate. Nevertheless, there are

analysis doing this. For example, the IPCC estimates that a doubling of CO2, which goes

along with an increase of global average surface temperature between 1.5 and 4.5 degree Celsius,

reduces world GDP by 1.5 to 2 percent (see IPCC, 1996, p. 218). This damage is obtained

for the economy in steady state and comprises both market and nonmarket impacts, where

nonmarket impacts are direct reductions of people’s welfare resulting from a climate change.

In this paper we intend to integrate a simple climate model in a descriptive model of

endogenous growth in order to analyze the effects of GHG emissions and of abatement policies

on economic growth. We study a descriptive growth model because we want to analyze both the

balanced growth path and the economy on the transition path. Assuming a utility maximizing

individual, however, would result in a dynamic system which is in general not asymptotically

stable but a saddle point. Therefore, transition dynamics are often studied by assuming that

the economy jumps to the stable manifold (the so-called jump variable technique). This implies

that the level of consumption must perform a discontinuous jump at time t = 0 which does not

seem to give a realistic description of economies.

The rest of the paper is organized as follows. In section 2.1 we present our general descriptive

growth model. Further, we model GHG emissions and changes in average surface temperature

using a simple energy balance model (EBM). Section 2.2 introduces the balanced growth path

and section 2.3 presents simulation studies analyzing the effects of different tax rates and

abatement spending on GHG emissions. In addition, we study the effects of global warming as

to the growth rate for both the balanced growth path and for the economy on the transition

path. Section 3.1 introduces a specialization of the growth model giving the so-called AK

growth model which is linear in the capital stock and compares this model to the one presented

in section 2. In section 3.2 we derive the second-best abatement share and in section 3.3 we

study the problem of the social planner, who determines both the first-best investment share

and the first-best abatement share. Section 4, finally, concludes the paper.
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2 A descriptive model of endogenous growth

2.1 Structure of the model

We assume that aggregate production takes place according to the following aggregate produc-

tion function

Ȳ (t) = AK̄(t)α(H(t)L(t))1−αD(T (t) − To), (1)

with Ȳ (t) aggregate production, A a positive constant, H(t) human capital or a stock of

knowledge which is formed as a by-product of aggregate investment and L(t) labour input.

K̄ is aggregate physical capital, α ∈ (0, 1) is the capital share and t gives time which will be

deleted in the following if no ambiguity results. D(T (t)−To) is the damage function giving the

damage resulting from deviations of actual temperature from pre-industrial temperature, To.

It should be mentioned that the assumption of a continuous damage function is only justified

provided the temperature increase does not exceed a certain threshold. This holds because for

higher increases of the temperature catastrophic events may occur going along with extremely

high economic costs which cannot be even evaluated. Just one example is the break down of the

Gulf Stream which would dramatically change the climate in Europe. Therefore, the analysis

assuming a damage function only makes sense for temperature increases within certain bounds.

Per capita production is obtained by dividing both sides of (1) by L as4

Y = AKαH1−αD(·). (2)

The income identity in per capita variables in the economy is given by

Y − X = I + C + B, (3)

with X = τY, τ ∈ (0, 1), the (per capita) tax revenue, I investment, C consumption and B

abatement activities. This means that national income after tax is used for investment, con-

sumption and abatement. As to abatement activities we assume that this variable is expressed

as ratio to total tax revenue X,

B = τbX = τbτY, (4)

4In the following we omit the time argument.
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with τb ∈ (0, 1) the ratio of abatement spending to the tax revenue.

As to the damage function form D(T − To) we assume that it is C2 and satisfies

D(T − To)







= 1, for T = To

< 1, for T 6= To,
(5)

with derivative

∂ D(·)
∂ T

≡ D′(·)







> 0, for T < To

< 0, for T > To.
(6)

The per capita capital accumulation function is given by5

K̇ = AKαH1−αD(·)(1 − τ) − C − B − (δ + n)K =

AKαH1−αD(·)(1 − τ(1 + τb) − c(1 − τ)) − (δ + n)K, (7)

with n ∈ (0, 1) the growth rate of labour input and δ ∈ (0, 1) is the depreciation rate of physical

capital. Further, we express consumption as ratio to GDP after tax, i.e. C = c Y (1 − τ),

c ∈ (0, 1). It should be noted that the parameters must be such that τ(1+τb)+c(1−τ) ∈ (0, 1)

holds.

As mentioned above we assume that gross investment in physical capital is associated with

positive externalities which build up a stock of knowledge capital which positively affects labour

productivity. Knowledge per capita evolves according to

Ḣ = ϕ I − (η + n)H = ϕ(AKαH1−αD(·)(1 − τ) − C − B) − (η + n)H =

ϕ(AKαH1−αD(·)(1 − τ(1 + τb) − c(1 − τ))) − (η + n)H, (8)

with ϕ > 0 a coefficient determining the external effect associated with investment and η ∈ (0, 1)

depreciation of knowledge.

Next, we describe the interrelation between economic activities and the change in the average

global surface temperature. The simplest method of considering the climate system of the earth

5The dot over a variable gives the derivative with respect to time.
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is in terms of its global energy balance which is done by so-called energy balance models (EBM).

According to an EBM the change in the average surface temperature on earth is described by6

dT (t)

dt
ch ≡ Ṫ (t) ch = SE − HE(t) − FN(t) + β1 (1 − ξ) 6.3 ln

M

Mo

, T (0) = T0, (9)

with T (t) the average global surface temperature measured in Kelvin7 (K), ch the heat capacity8

of the earth with dimension J m−2 K−1 (Joule per square meter per Kelvin)9 which is considered

a constant parameter, SE is the solar input, HE(t) is the nonradiative energy flow, and FN(t) =

F ↑ (t)−F ↓ (t) is the difference between the outgoing radiative flux and the incoming radiative

flux. SE, HE(t) and FN(t) have the dimension Watt per square meter (Wm−2). F ↑ follows

the Stefan-Boltzmann-Gesetz which is

F ↑= ε σT T 4, (10)

with ε the emissivity which gives the ratio of actual emission to blackbody emission. Blackbodies

are objects which emit the maximum amount of radiation and which have ε = 1. For the

earth ε can be set to ε = 0.95. σT is the Stefan-Boltzmann constant which is given by σT =

5.67 10−8 Wm−2K−4. Further, the ratio F ↑ /F ↓ is given by F ↑ /F ↓= 109/88. The difference

SE−HE can be written as SE−HE = Q(1−α1)α2/4, with Q = 1367.5Wm−2 the solar constant,

α1 = 0.3 the planetary albedo, determining how much of the incoming energy is reflected by

the atmosphere and α2 = 0.3 that part of the energy which is not absorbed by the surface of

the Earth.

The effect of emitting GHGs is to raise the concentration of GHGs in the atmosphere which

increases the greenhouse effect of the Earth. This is done by calculating the so-called radiative

forcing which is a measure of the influence a GHG, like CO2 or CH4, has on changing the

balance of incoming and outgoing energy in the Earth-atmosphere system. The dimension of

6This part follows Roedel, 2001, chap. 10.2.1 and chap. 1. See also Henderson, 1987, and Gassmann, 1992. A

more complex presentation can be found in Harvey, 2000.

7273 Kelvin are 0 degree Celsius.

8The heat capacity is the amount of heat that needs to be added per square meter of horizontal area to raise

the surface temperature of the reservoir by 1K.

91 Watt is 1 Joule per second.
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the radiative forcing is Wm−2. For example, for CO2 the radiative forcing, which we denote as

F , is given by

F ≡ 6.3 ln(M/Mo), (11)

with M the actual CO2 concentration, Mo the pre-industrial CO2 concentration and ln the

natural logarithm (see IPCC, 2001, p. 52-53).10 For other GHGs other formulas can be given

describing their respective radiative forcing and these values can be converted in CO2 equiva-

lents. β1 is a feedback factor which captures the fact that a higher CO2 concentration affects

for example atmospheric water vapour which has effects for the surface temperature on Earth.

β1 is assumed to take values between 1.1 and 3.4. The parameter ξ, finally, captures the fact

that ξ = 0.3 of the warmth generated by the greenhouse effect is absorbed by the oceans

which transport the heat from upper layers to the deep sea. In equilibrium, i.e. for Ṫ = 0,

(9) gives a surface temperature of about 288.4 Kelvin which is about 15 degree Celsius for the

pre-industrial GHG concentration, i.e. for M = Mo.

The heat capacity of the Earth, ch, is largely determined by the oceans since most of the

Earth’s surface is covered by seawater. Therefore, the heat capacity of the oceans is used as a

proxy for that of the earth. ch is then given by ch = ρw cw d0.7, with ρw the density of seawater

(1027 m−3 kg), cw the specific heat of water (4186 J kg−1 K−1) and d the depth of the mixed

layer which is set to 70 meters. The constant 0.7 results from the fact that 70 percent of the

Earth are covered with seawater. Inserting the numerical values, assuming a depth of 70 meters

and dividing by the surface of the earth gives ch = 0.1497.

Setting β1 = 1.1 and assuming a doubling of CO2 implies that in equilibrium the average

surface temperature rises from 288.4 to 291.7 Kelvin, implying a rise of about 3.3 degree Celsius.

This is in the range of IPCC estimates11 which yield increases between 1.5 and 4.5 degree Celsius

as a consequence of a doubling CO2 concentration (IPCC, 2001, p. 67).

Summarizing this discussion the EBM can be rewritten as

Ṫ (t) ch =
1367.5

4
0.21 − 0.95

(

5.67 10−8
)

(21/109) T 4 + 4.851 ln
M

Mo

, T (0) = T0. (12)

10The CO2 concentration is given in parts per million (ppm).

11IPCC results are obtained with more sophisticated Atmosphere-Ocean General Circulation Models.
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The concentration of GHGs M evolves according to the following differential equation

Ṁ = β2E − µM,M(0) = M0. (13)

E denotes emissions and µ is the inverse of the atmospheric lifetime of CO2. As to the parameter

µ we assume a value of µ = 0.1.12 β2 captures the fact that a certain part of GHG emissions

are taken up by oceans and do not enter the atmosphere. According to IPCC β2 = 0.49 for the

time period 1990 to 1999 for CO2 emissions (IPCC, 2001, p. 39).

As concerns emissions of GHGs we assume that these are a by-product of production and

expressed in CO2 equivalents. So, emissions are a function of per capita output relative to

per capita abatement activities. This implies that a higher production goes along with higher

emissions for a given level of abatement spending. This assumption is frequently encountered

in environmental economics (see e.g. Smulders, 1995). It should also be mentioned that the

emission of GHGs does not affect production directly but only indirectly by affecting the cli-

mate of the Earth which leads to a higher surface temperature and to more extreme weather

situations. Formally, emissions are described by

E =

(

a Y

B

)γ

, (14)

with γ > 0 and a > 0 constants. The parameter a can be interpreted as a technology index

describing how polluting a given technology is. For large values of a a given production (and

abatement) goes along with high emissions implying a relatively polluting technology and vice

versa.

The economy is completely described by equations (7), (8), (12) and (13), with emissions

given by (14).

2.2 The balanced growth path

The balanced growth path (BGP) is defined as follows13

12The range of µ given by IPCC is µ ∈ (0.005, 0.2), see IPCC1, 2001, p. 38.

13In the following, steady state is used equivalently to balanced growth path.
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Definition 1 A balanced growth path (BGP) is a path such that Ṫ = 0, Ṁ = 0 and K̇/K =

Ḣ/H hold, with M ≥ Mo.

This definition contains several aspects. First, we require that the temperature and the

GHG concentration must be constant along a BGP. This is a sustainability aspect. Second,

the growth rate of per capita capital equals that of per capita knowledge and is constant. It

should be noted that this implies that the growth rates of per capita GDP and of per capita

consumption are constant, too, and equal to that of capital and knowledge. Third, we only

consider balanced growth paths with a GHG concentration which is larger than or equal to the

pre-industrial level. This requirement is made for reasons of realism. Since GHG concentration

has been rising monotonically over the last decades it is not necessary to consider a situation

with declining GHG concentration. Proposition 1 shows that there exists a unique BGP for

this economy.

Proposition 1 For the model economy there exists a unique BGP which is asymptotically

stable.

Proof: See appendix.

This proposition shows that any solution starting in the vicinity of the BGP will converge

to this path in the long run. The balanced growth rate of the economy is given by (7)/K as

g ≡ A(k?)α−1D(·)((1 − τ)(1 − c) − ττb) − (δ + n), (15)

with k? the value of k on the BGP, where k is defined as k ≡ K/H. However, it cannot be

excluded that the BGP goes along with a negative growth rate because the sign of the balanced

growth rate depends on the concrete numerical values of the parameters. The question of

whether there exists a BGP with a positive growth rate, i.e. a non-degenerate BGP, for a

certain parameter constellation is addressed in the next subsection. In this section we make the

assumption that a non-degenerate BGP exists and analytically study growth effects of varying

the tax rate and abatement spending.

In a next step we analyze how the balanced growth rate reacts to changes in the income

tax rate τ and to different values of the ratio τb. To do so we differentiate g with respect to τ.
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This gives

∂g

∂τ
= AD(·)(k?)α−1(−1)(1 − c + τb) +

(α − 1)(k?)α−2 ∂k

∂τ
AD(·)((1 − τ)(1 − c) − ττb) +

D′(·)∂T

∂τ
(k?)α−1A((1 − τ)(1 − c) − ττb) >< 0, (16)

with ? denoting values on the BGP. From (12) and (13) it is easily seen that ∂k?/∂τ < 0 and

∂T ?/∂τ < 0, for T > To. To see this one uses that T ? positively depends on M ?, which, for

its part, negatively depends on τ . The latter is seen by calculating M ? from Ṁ = 0 and using

(14). ∂k?/∂τ < 0 is obtained from implicitly differentiating k̇/k = K̇/K − Ḣ/H.

The second inequality in (16) results from the fact that in our model an increase in the

tax revenue raises abatement activities since we assume a fixed ratio of abatement activities to

tax revenue. The first inequality states that a rise in the tax rate reduces the ratio of physical

to human capital. This shows that an increase in the tax rate has both positive and negative

partial growth effects. On the one hand, a higher tax rate reduces investment because more

resources are spent for abatement. On the other hand, a higher tax rate reduces the increase in

average global surface temperature and, as a consequence the damage resulting from To. This

raises aggregate production which has a positive growth effect. Further, it should be mentioned

that the decrease in K/H = k has also a positive growth effect since a lower ratio of physical to

human capital goes along with higher growth. This means that economies with small physical

capital stocks and high stocks of knowledge are likely to show large growth rates. This, for

example, was the case for Germany and Japan after the second world war. So, the analytical

model does not allow to answer the question of whether a higher tax rate reduces or increases

the long run balanced growth rate.

Next, we analyze the effects of an increase in abatement activities implying a higher value
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of τb. The derivative of g with respect to τb is given by

∂g

∂τb

= AD(·)(k?)α−1(−τ) +

AD(·)(α − 1)(k?)α−2 ∂k

∂τb

((1 − τ)(1 − c) − ττb) +

AD′(·)∂T

∂τb

(k?)α−1((1 − τ)(1 − c) − ττb) >< 0, (17)

As for the tax rate we see that higher abatement activities may raise or lower economic growth.

The reason is as above. On the one hand, more abatement activities reduce investment spend-

ing. On the other hand, higher abatement activities have positive indirect growth effects by

reducing the temperature increase, and thus the damage, and by reducing the value k = K/H.

To get further insights, we undertake simulations in the next subsection.

2.3 Numerical examples

We consider one time period to comprise one year. The population growth rate is assumed to

be n = 0.02 and the depreciation rate of capital is δ = 0.075. The pre-industrial level of GHGs

is normalized to one, i.e. Mo = 1, and we set γ = 0.9. This is motivated by an OECD study

which runs regressions with emissions per capita as the dependent variable which is explained

among others by GDP per capita and which obtains a value of about 0.9 (see OECD, 1995).

β1 and ξ are set to β1 = 1.1 and ξ = 0.3 (see section 2). c = 0.8 and the tax share is set to

τ = 0.2 which is about equal to the tax share in Germany in 1996 (see Sachverständigenrat,

2001). The capital share is α = 0.35 and B is set to B = 2.9. As to τb we consider the values

τb = 0.0075, 0.01, 0.0125. For example, in Germany the ratio of abatement spending to prevent

air pollution to total tax revenue was 0.01 in 1996 (see Sachverständigenrat, 2001, table 30 and

table 65). a is set to a = 0.00075. This implies that GHGs double for τb = 0.01.

An important role is played by the damage functions D(·). This will be introduced now. As

to D(·) we assume the function

D(·) =
(

a1 (T − To)
2 + 1

)

−φ
, (18)

with a1 > 0, φ > 0. As to the numerical values of the parameters in (18) we assume a1 = 0.05

and φ = 0.05 and a1 = 0.025 and φ = 0.025. (a1 = 0.05, φ = 0.05) implies that an increase
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of the surface temperature by 1 (2, 3) degree(s) leads to a decrease of aggregate production

by 0.2 (0.9, 1.8) percent. The combination (a1 = 0.025, φ = 0.025) implies that an increase of

the surface temperature by 1 (2, 3) degree(s) leads to a decrease of aggregate production by

0.06 (0.2, 0.5) percent. Comparing these values with the estimates published in (IPCC, 1996),

mentioned in the Introduction, we see that the values we choose yield a damage which is a bit

lower than the one reported by (IPCC, 1996).

In the following tables we report the results of our numerical studies where we report

the temperature on the BGP and the GHG concentration on the BGP. Further, we report

the balanced growth rate denoted by g. gY is the average growth rate of per capita GDP on

the transition path for the next 100 years, where initial conditions are set to T (0) = 289,

M(0) = 1.13 and k(0) = 8.1. The growth rate of output is given by

Ẏ

Y
= α

K̇

K
+ (1 − α)

Ḣ

H
+

D′(·)
D(·) Ṫ .

In table 1 we vary the abatement share between τb = 0.0075 and τb = 0.0125.

Table 1. Varying the abatement share between 0.0075 and 0.0125 with a2 = 0.05, φ = 0.05.

τb T ? M? g gY

0.0075 293.0 2.63 0.0185 0.0191

0.01 291.8 2.03 0.0198 0.0203

0.0125 290.8 1.66 0.0207 0.0211

This table shows that an increase in the ratio of abatement spending to tax revenue, and

also to GDP, leads to both higher growth rates and to a smaller increase in GHG emissions and,

as a consequence, to a smaller increase in average global surface temperature. This holds both

for the long run balanced growth rate as well as for the transition path for the next 100 years.

In this case, the decline in investment caused by more abatement spending is compensated by

the higher production resulting from a smaller damage since the temperature increase is smaller

with higher abatement. The maximum growth rate is obtained then there is no increase in the

average temperature implying that the damage is zero. This is achieved for τb about τb = 0.02.

11



This outcome, of course, depends on the specification of the damage function. This is shown

in the next table, where we set a2 = 0.025 and φ = 0.025.
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Table 2. Varying the abatement share between 0.0075 and 0.0125 with a2 = 0.025, φ = 0.025.

τb T ? M? g gY

0.0075 293.0 2.63 0.0218 0.0222

0.01 291.8 2.03 0.022 0.0223

0.0125 290.8 1.66 0.0219 0.0222

Table 2 shows that the growth rate first rises when abatement spending is increased but

then declines when abatement is further increased although the growth effects are very small.

This is due to the smaller damage caused by the increase in average global surface temperature.

Next, we consider the case of varying the tax share between 15 and 25 percent. The results

for (a2 = 0.05, φ = 0.05) are shown in table 3.

Table 3. Varying the tax share between 0.15 and 0.25 with a2 = 0.05, φ = 0.05.

τ T ? M? g gY

0.15 293.0 2.63 0.0266 0.0274

0.2 291.8 2.03 0.0198 0.0203

0.25 290.8 1.66 0.0124 0.0127

Table 3 shows that raising the tax rate reduces GHG emissions but also the balanced growth

rate and the GDP growth rate on the transition path. It is true that a higher tax revenue raises

economic growth and abatement spending since the latter are always in fixed proportion to the

tax revenue. However, the negative direct growth effect of a higher tax share clearly dominates

the positive growth effect of smaller damage due to less GHG emissions and a smaller increase

in temperature.

We also studied the effects of varying abatement activities for different values of γ. To do

so we set γ = 0.5 and γ = 1.5.14 From a qualitative point of view the results are the same as

14To get temperature increase which are compatible with IPCC estimates we set a = 0.00035 and a = 0.0011

respectively.
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for γ = 0.9. The only difference is that the quantitative growth effects are a bit different. We

do not report the outcome of these studies here but they are available on request.

In the next section we present a special form of the growth model by assuming that physical

capital and the stock of knowledge can be summarized in one variable. This gives the so-called

AK model of endogenous growth.

3 The AK endogenous growth model

Assuming that physical capital and human capital evolve at the same rate, i.e. K̇ = Ḣ and

K(0) = H(0) hold, allows to rewrite the aggregate per capita production function as follows,

Y = AK D(·) (19)

which is linear in capital. In the economics literature this simplifying assumption is frequently

made and in the following we study this model. First, we consider the descriptive growth model

and then we analyze the second-best solution where abatement activities are chosen optimally.

3.1 The descriptive growth model

The differential equation describing the evolution of capital is now given by

K̇ = AK D(·)(1 − τ(1 + τb) − c(1 − τ)) − (δ + n)K, (20)

where we assume again B = τbX and C = cY (1 − τ) as in section 2. The economy then is

completely described by (20), (12) and (13), with emissions given by (14) and the balanced

growth path is

g = AD(·)(1 − τ(1 + τb) − c(1 − τ)) − (δ + n). (21)

The balanced growth rate is independent from the capital stock but only depends on the average

global surface temperature T. This implies that a BGP is as in defined in section 2 with the

only difference that we only have to consider the equations Ṁ and Ṫ .15

15Of course, the AK model is also asymptotically stable.
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From (21) it is immediately seen that variations in τb and in τ affect the balanced growth

rate both directly as well as indirectly by affecting the temperature on the balanced growth

path. As in section 2, there is a positive indirect growth effect and a negative direct growth

effect going along with changes in τb and in τ , the overall effect, however, cannot be determined

for the general model. Therefore, we will present the results of our numerical examples without

presenting the results for the analytical model.

The parameters are as in section 2, i.e. n = 0.02, δ = 0.075, τ = 0.2, Mo = 1, c = 0.8,

γ = 0.9, β1 = 1.1, ξ = 0.3, a = 0.00075 and α = 0.35. The only different parameter is the value

of A which we set to A = 0.75 in order to get plausible growth rates. The tax share is set to

τ = 0.2 and we consider for τb the values τb = 0.0075, 0.01, 0.0125. a2 and φ are again set to

a2 = 0.05 and φ = 0.05.

Table 4 and table 5 present the results of varying abatement spending and of variations of

the tax share with τ = 0.2 and τb = 0.01 respectively.16

Table 4. Varying the abatement share between 0.0075 and 0.02 with τ = 0.2.

τb T ? M? g

0.0075 293.0 2.63 0.0197

0.01 291.8 2.03 0.0208

0.0125 290.8 1.66 0.0216

0.018 289.3 1.19 0.022

0.02 288.8 1.08 0.0219

16In this section we only consider the balanced growth path
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Table 5. Varying the tax share 0.15 and 0.25 with τb = 0.01.

τ T ? M? g

0.15 293.0 2.63 0.0269

0.2 291.8 2.03 0.0208

0.25 290.8 1.66 0.0142

Table 4 and table 5 largely confirm the results of section 2. That is, a rise in the tax share

reduces the balanced growth rate and also GHG emissions. The growth rates in the AK model

differ a bit from those of section 2 but the change is about the same. However, in contrast

to section 2, the growth rate is maximized for τb such that the temperature is larger than the

pre-industrial temperature To. Next, we consider the second-best solution.

3.2 The second-best solution

To derive the second-best solution we assume that the government takes private consumption

and the tax share as given and sets abatement such that welfare is maximized. As to welfare

we assume as usual that it is given by the discounted stream of per capita utility times the

number of individuals over an infinite time horizon. As concerns utility we assume a logarithmic

function. More concretely, the government solves the following optimization problem

max
τb

∫

∞

0

e−(ρ−n)tL(0) ln(c(1 − τ)AKD(·))dt (22)

subject to (20), (13), (12) with c(1 − τ)AKD(·) = C per capita consumption. ln denotes the

natural logarithm and ρ is the discount rate. In the following we normalize L(0) ≡ 1.

To find necessary optimality conditions we formulate the current-value Hamiltonian as

H̄(·) = ln(c(1 − τ)AKD(·)) + λ1(AK D(·)(1 − τ(1 + τb) − c(1 − τ)) − (δ + n)K) +

λ2

(

β2

(

a

τbτ

)γ

− µM

)

+ λ3 (ch)
−1 ·

(

1367.5

4
0.21 −

(

5.67 10−8
)

(19.95/109)T 4 + β1 (1 − ξ) 6.3 ln
M

Mo

)

, (23)
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with λi, i = 1, 2, 3, the shadow prices of K, M and T respectively and E = aγY γA−γ emissions.

Note that λ1 is positive while λ2 and λ3 are negative.

The necessary optimality conditions are obtained as

∂H̄(·)
∂τb

= λ1AKD(·)(−τ) − λ2β2(a/τ)γ(−γ)τ−γ−1
b = 0, (24)

λ̇1 = (ρ + δ) λ1 − K−1 − λ1 AD(·)(1 − τ(1 + τb) − c(1 − τ)), (25)

λ̇2 = (ρ − n) λ2 + λ2 µ − λ3 (1 − ξ) β1 6.3 c−1
h M−1, (26)

λ̇3 = (ρ − n) λ3 −
D′(·)
D

− λ1 AK D′(·)(1 − τ(1 + τb) − c(1 − τ)) +

λ3 (5.67 10−8(19.95/109) 4 T 3)

ch

. (27)

Further, the limiting transversality condition limt→∞ e−(ρ+n)t(λ1K + λ2T + λ3M) = 0 must

hold.

From (24) we get the second-best optimal abatement activities (as ratio to the tax revenue)

as

τ o
b =

(−λ2β2γ(a/τ)γ

AD(·)Kλ1τ

)1/(1+γ)

(28)

(28) shows that τ o
b is the higher the more polluting the technology in use is, which is modelled

in our framework by the coefficient a. This means that economies with less clean production

technologies have a higher optimal abatement share than economies with a cleaner technology.

However, this does not mean that economies with a cleaner technology have higher emissions.

This holds because, on the one hand, the higher abatement share may not be high enough to

compensate for the more polluting technology. On the other hand, the second-best pollution

tax rate also depends on λ1, λ2 and K. Further, from the expression for τ o
b one realizes that

the higher the absolute value of the shadow price of GHG concentrations, |λ2|, the higher the

abatement share has to be set.

For the second-best solution a balanced growth path is defined similar to section 2.

Definition 2 For the second-best solution a balanced growth path is a path such that Ṫ =

Ṁ = λ̇2 = λ̇3 = 0 and K̇/K = −λ̇1/λ1 hold, with M ≥ Mo.

Unlike for the descriptive versions of our growth models we cannot give results as to the

existence and stability of a balanced growth model for the analytical model. Therefore, and in
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order to get an impression about the quantitative results of the second-best solution we again

make simulations with the same parameters of section 3.1, with τ = 0.2 and a discount rate of

5 percent, i.e. ρ = 0.05. For the numerical values of the parameters it can be shown that there

exists a unique BGP which, however, is not asymptotically stable but a saddle point. This is

the contents of proposition 2.

Proposition 2 For the second-best model economy there exists a unique BGP which is a saddle

point for the numerical parameter values of section 3.1.

Proof: See appendix.

Table 6 gives the balanced growth rate and the values of T, M, B/Y and τ o
b on the BGP.

Table 6. The second-best solution

a τ o
b B?/Y ? T ? M? g

7.5 · 10−4 0.017 0.0034 289.5 1.26 0.0221

5 · 10−4 0.012 0.0024 289.2 1.17 0.0229

Table 6 shows that for the AK growth model there exists an optimal share for abatement

spending which maximizes utility and also the balanced growth rate. This share is about

1.7 percent of the tax revenue for a = 7.5 · 10−4, implying a share of abatement spending

per GDP, B?/Y ?, of 0.34 percent. Further, it is seen that in a world with a more polluting

technology (higher a) the second-best pollution tax rate is larger but, nevertheless, emissions

and the increase in temperature are also higher. So, economies with a more polluting production

technology should have have a higher pollution tax rate. But, in spite of this, the emissions

in the economy with the more polluting technology are higher because the higher abatement

share is not enough to compensate for the more polluting technology.

Thus, our model is in part consistent with the literature which postulates that an envi-

ronmental Kuznets curve exists, where emissions first rise with an increase in GDP (when

the technology in use is relatively polluting) but decline again when a certain level of GDP is
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reached and the technology becomes cleaner (see e.g. the contribution by Stokey, 1998).17 But

it should be kept in mind that our result is obtained for second-best government policies and

it may be doubted that in reality governments pursue optimal policies.

It should also be mentioned that the choice of the discount rate ρ affects the optimal τ o
b and

also the balanced growth rate. However, neither the growth rate nor optimal abatement react

sensitively to changes in ρ. For example, setting ρ = 0.02 or ρ = 0.1 basically leaves unchanged

both optimal abatement spending and the growth rate.

In the next section we study the problem of the social planner. The difference to the

optimization problem faced by the government in this section is that the social planner decides

on both the consumption share and on the abatement share instead of taking consumption as

given.

3.3 The social optimum

As mentioned at the end of the last section the social planner can decide both on the investment

share and on the abatement share. The optimization problem, then, is given by

max
cs,b

∫

∞

0

e−(ρ−n)tL(0) ln(cs AKD(·))dt (29)

with cs the consumption share and b the abatement share in the social optimum respectively.

Again, ln denotes the natural logarithm, ρ is the discount rate and we normalize L(0) ≡ 1.

The constraints are (12) and (13), where b ≡ B/Y, and the differential equation K̇. The latter

is now given by K̇ = AK D(·)(1 − cs − b) − (δ + n)K. Again, we formulate the current-value

Hamiltonian which is

H̄(·) = ln(cs AKD(·)) + λ4K̇ + λ5Ṁ + λ6Ṫ , (30)

with λi, i = 4, 5, 6, the shadow prices of K, M and T in the social optimum. As in the previous

section, λ4 is positive and λ5 and λ6 are negative.

17In the model by Stokey the pollution intensity is a choice variable while it is a parameter in our model.
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The necessary optimality conditions now are

∂H̄(·)
∂cs

= c−1
s − λ4AKD(·) = 0, (31)

∂H̄(·)
∂b

= −λ4AKD(·) − λ5β2γb−γ−1aγ = 0, (32)

λ̇4 = (ρ + δ) λ4 − K−1 − λ4 AD(·)(1 − cs − b), (33)

λ̇5 = (ρ − n + µ) λ5 − λ6 (1 − ξ) β1 6.3 c−1
h M−1, (34)

λ̇6 = (ρ − n) λ6 −
D′(·)
D

− λ4 AK D′(·)(1 − cs − b) +

λ6 (5.67 10−8(19.95/109) 4 T 3)

ch

. (35)

The transversality condition is as in the last section.

From (31) and (32) we get the first-best consumption share and abatement share (relative

to GDP respectively) as

cs = (λ4AKD(·))−1 (36)

b =

( −λ5β2γaγ

AD(·)Kλ4

)1/(1+γ)

. (37)

One immediately realizes that (37) is similar to (28) and the interpretation is basically the same

as in section 3.2. (36) shows that the first-best optimal consumption share negatively depends

on both physical capital and on its shadow price. That means the higher the stock of capital

and the higher its ’price’ the smaller is the consumption share. Of course, as for the second-best

solution, consumption grows while the consumption share is constant on the BGP. Further, the

higher the damage caused by the temperature increase the smaller the consumption share in

the economy. This outcome is due to the fact that the temperature increase negatively affects

aggregate production, Y, and, thus, consumption which is equal to cs · Y.

As to the question of whether there exists a BGP for the social optimum we again resort to

simulations. Here, we can state proposition 3.

Proposition 3 For the social optimum there exists a unique BGP, as defined in definition 2,

which is a saddle point for the numerical parameter values of section 3.1.

Proof: See appendix.
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In the following we focus our attention to the abatement share and to the temperature

increase in the social optimum compared to the second-best economy. Table 7 gives the values

of T, M and B/Y on the BGP for a = 7.5 · 10−4 and a = 5 · 10−4 respectively. The other

parameters are as in section 3.2.
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Table 7. The social optimum

a B?/Y ? T ? M?

7.5 · 10−4 0.0041 288.65 1.05

5 · 10−4 0.0028 288.57 1.04

Table 7 demonstrates that, in the social optimum, economies with a less polluting technology

(smaller a) have a smaller abatement share than economies with a more polluting technology.

But, nevertheless, the economies with the cleaner technology have a smaller level of GHG

emissions and, consequently, a smaller increase in temperature. This result is equivalent to

the one obtained for the second-best solution. That means that the higher abatement share

cannot compensate for the less cleaner production technology. One also realizes that the abate-

ment share in the social optimum is higher compared to the second-best solution and, as a

consequence, the temperature increase is smaller.

4 Conclusions

In this paper we have studied the interrelation between anthropogenic global warming and

economic growth assuming a simple descriptive model of endogenous growth. Using simulations,

we have seen that increases in abatement spending may yield a win-win situation. That means

a rise in abatement activities both reduces GHG emissions and raises economic growth. This

holds for both the balanced growth rate and for the growth rate of GDP on the transition

path. Further, we have seen that a situation may exist where maximum growth is obtained

if the average global surface temperature is reduced to its pre-industrial level. This outcome,

however, depends on the growth model employed. So, in the AK model maximum growth was

obtained for an average global surface temperature which is higher than the pre-industrial level.

Assuming a logarithmic utility function we computed the second-best value for the share

of abatement spending and we have seen that economies with a cleaner production technology

have a smaller temperature increase compared to economies with more polluting technologies,

although the latter should spend a higher share for abatement. The same outcome has been
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obtained for the social optimum. Further, the abatement share in the social optimum is higher

than in the second-best solution.

Of, course the result that a win-win situation my be observed crucially depends on the

damage caused by the temperature increase. But, the damage function we used was well in

line with the damage reported by IPCC studies so that our outcome cannot be dismissed as

purely academic. Nevertheless, additional research is necessary to get further insight in the

impact of global warming on economic growth. So, more elaborate economic models should be

constructed using climate models in order to achieve additional results.

Further, our paper assumed that the change in temperature and the damage caused is

the same for all regions in the world. However, in reality different regions will be affected

differently. This could be taken into account by resorting to partial differential equations where

the variables are functions of time and of the relative position on Earth.

Appendix

Proof of proposition 1. First, we define k = K/H giving k̇/k = K̇/K − Ḣ/H.18 To show

uniqueness of the steady state we solve k̇/k = 0, (12)=0 and (13)=0 with respect to k, T and

M. Setting (12)=0 gives

T1,2 = ±99.0775 (71.7935 + 4.851 ln(M/Mo))
1/4

T3,4 = ±99.0775
√
−1 (71.7935 + 4.851 ln(M/Mo))

1/4.

Clearly T3,4 are not feasible. Further, since M ≥ Mo only the positive solution of T1,2 is feasible.

Uniqueness of M is immediately seen. The equation k̇/k is given by

f(k, ·) ≡ k̇

k
= Akα−1D(·)(1 − ϕk)((1 − τ)(1 − c) − ττb) − (δ − η),

with ∂f(k, ·)/∂k < 0 and limk→0 f(k, ·) = +∞ and limk→∞ f(k, ·) = −∞ for a given T . This

shows that there exists a unique k which solves k̇/k = 0.

18Since k is raised to a negative power in (7)/K, k = 0 is not feasible and we therefore consider the equation

k̇/k in the rate of growth.
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To study the local dynamics we calculate the Jacobian matrix J corresponding to this

dynamic system which is obtained as

J =











∂k̇/∂k D′(·)A(k?)α(1− ϕk?)((1 − τ)(1 − c)− ττb) 0

0 −(79.8 (5.67 10−8) (T ?)3)/(109ch) 4.851/(chM
?)

0 0 −µ











,

with ? denoting steady state values and the parameter values as in section 2. The eigenvalues

of J are given by

e1 = −µ, e2 = −(79.8
(

5.67 10−8
)

(T ?)3)/(109ch) and e3 = ∂k̇/∂k.

Since ∂f(k, ·)/∂k < 0, ∂k̇/∂k < 0 also holds. Thus, proposition 1 is proved. �

Proofs of proposition 2 and 3. To prove proposition 2 we define Λ ≡ K · λ1 giving Λ̇/Λ =

K̇/K + λ̇1/λ1. Setting Λ̇/Λ = 0 gives Λ? = (ρ − n)−1. Inserting Λ? in (28) and the resulting

expression as well as Λ? in equations (13), (12), (26) and (27) gives an autonomous system of

differential equations which depends on M, T, λ2 and λ3. A rest point of this system yields a

BGP. With the numerical parameters the solution is given by M ? = 1.25625, T ? = 289.50603,

λ?
2 = −0.75023 and λ?

3 = −0.00378.

The eigenvalues of the Jacobian are given by

e1 = 6.75544, e2 = −6.75544 e3 = 0.19010 e4 = −0.19010.

Thus, proposition 2 is proved. For a = 5 · 10−4 the numerical values are different, but the

qualitative result remains unchanged.

The proof of proposition 3 proceeds in complete analogy to that of proposition 2. Therefore,

we do not mention it in detail. Again, the value of a affects the numerical values but leaves

unchanged the qualitative outcome. �

References

Egli, H. (2002), ’Are cross-country studies of the environmental Kuznets curve Misleading?

New evidence from time series data for Germany’, Working Paper 25.2002, Fondazione Eni

Enrico Mattei, Milan.

24



Fankhauser, S. (1994), Valuing Climate Change. The Economics of the Greenhouse Effect.

London: Earthscan.

Gassmann, F. (1992), ’Die wichtigsten Erkenntnisse zum Treibhaus-Problem’, in Schweizerische

Fachvereeinigung für Energiewirtschaft (ed.), Wege in eine CO2 - arme Zukunft, Zürich: Verlag
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einen höheren Wachstumspfad, Stuttgart: Metzler-Poeschel.

Smulders, S. (1995), ’Entropy, environment, and endogenous growth’, International Tax and

Public Finance 2: 319-340.

Smulders, S. (2000), Economic growth and environmental quality, in H. Gabel and H.L. Folmer

(eds.), Principles of Environmental and Resource Economics, Cheltenham: Edward Elgar.

Stokey, N. L. (1998), ’Are there limits to growth?’, International Economic Review 39: 1-31.

Tol, R. S. J. (2001), ’Equitable cost-benefit analysis of climate change’, Ecological Economics

36: 71-85.

25


