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Abstract

Economic research of the last decade linking macroeconomic fundamen-
tals to asset prices has revealed evidence that standard intertemporal asset
pricing theory is not successful in explaining (unconditional) first moments
of asset market characteristics such as the risk-free interest rate, equity pre-
mium and the Sharpe-ratio. Subsequent empirical research has pursued the
question whether those characteristics of asset markets are time varying and,
in particular, varying over the business cycle. Recently intertemporal asset
pricing models have been employed to replicate those time varying character-
istics. The aim of our contribution is (1) to relax some of the assumptions
that previous work has imposed on underlying economic and financial vari-
ables, (2) to extend the solution technique of Marcet and Den Haan (1990)
for those models by nonparametric expectations and (3) to propose a new es-
timation procedure based on the above solution technique. To allow for non-
parametric expectations in the expectations approach for numerically solving
the intertemporal economic model we employ the Local Linear Maps (LLMs)
of Ritter, Martinetz and Schulten (1992) to approzimate conditional expec-
tations in the Fuler equation. In our estimation approach based on mon-
parametric expectations we are able to use full structural information and,
consequently, Monte Carlo simulations show that our estimations are less bi-
ased than the widely applied GMM procedure. Based on quarterly U.S. data
we also empirically estimate structural parameters of the model and explore
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its time varying asset price characteristics. We in particular focus on the
Sharpe-ratio and find indication that the model is able to capture the time
variation of the Sharpe-ratio.



1 Introduction

Economic research in the past has attempted to link macroeconomic fun-
damentals to asset prices in the context of intertemporal models. The in-
tertemporal asset pricing literature has relied either on models of a pure ex-
change economy such as Lucas (1978) and Breeden (1979) or on the stochastic
growth model with production as in Brock and Mirman (1972) and Kydland
and Prescott (1982). These models are referred to as the consumption based
CAPM and the stochastic growth model of Real Business Cycle (RBC) type
respectively. In the pure exchange model asset prices are computed in an
economy where there is an exogenous dividend stream for a representative
agent. Given the observed low variability in consumption it has been shown
that the risk—free interest rate is too high and the mean equity premium
as well as the Sharpe-ratio, a measure of the risk—return trade—off, too low.
These phenomena are referred to as the interest rate puzzle, the equity pre-
mium puzzle and the Sharpe-ratio puzzle, respectively. For a survey on these
problems, see e.g., Mehra and Prescott (1985) or Kocherlakota (1996).

Lettau and Uhlig (1997a) have argued that it is crucial how consumption
is modeled. In models with production, e.g., the production and investment
based Capital Asset Pricing Model by Cochrane (1991, 1996) or the stochas-
tic growth model of RBC type the fundamental shock is to the production
function of firms and consumption is not an exogenous process as consumers
can optimize their consumption path in response to production shocks. They
thus can smooth consumption via savings and labor input if the latter is in
the model. If consumption is modeled as a choice variable and endogenous
the intertemporal marginal rate of substitution' may become even less vari-
able and asset market facts are even harder to match.?

In order to allow to match asset price characteristics with data economic
research has extended standard intertemporal models. Those extensions in-
clude the use of different utility functions, in particular habit formation,? see
e.g. Heaton (1993, 1995), Campbell and Cochrane (1999) and Boldrin, Chris-

I This is also referred to as stochastic discount factor or pricing kernel.

2See Lettau (1998), Lettau and Uhlig (1997a), Lettau and Uhlig (1997b) and Lettau,
Gong and Semmler (2001).

3Note, that path dependence of consumption choices in habit formation models imply
the possibility of negative marginal utility of consumption and equivalently (implausi-
ble) negative Arrow—Debreu prices — these may be prohibited by imposing rather strong
assumptions regarding to distributions of asset returns, see Chapman (1998) for details.



tiano and Fischer (1997, 1999), consider incomplete markets, see e.g. Telmer
(1993), Heaton and Lucas (1996), Luttmer (1996) and Lucas (1994), intro-
duce heterogenous agents as in Constantinides and Duffie (1996), or replace
the stochastic discount factor with a nonparametric function as in Chapman
(1997)*. Other approaches, for example, have focused on the variation of the
dividend stream rather than on the discount factor to explain the asset price
characteristics, see e.g. Bensal and Yaron (2000). Although some progress
has been made to match asset price characteristics with the data none of the
models is able to resolve all the puzzles at once.

Our contribution is not along the lines of research that attempt to repli-
cate first (unconditional ) moments of asset price characteristics, but rather
focus on a second type of research that studies the time variation of those
characteristics. In fact, there is already an important strand of research
in intertemporal asset pricing models that has concentrated on explaining
time—varying asset price characteristics with regard to the business cycle.
Empirical evidence in the last decades indeed has shown that stylized stock
market facts such as expected return, volatility and measures of reward—to—
risk, in particular the Sharpe ratio, are time-varying and predictable using
conditioning information with respect to the business cycle. Yet, some of the
empirical studies are not based on important economic structural relations
and are likely to suffer from mis—specification. Specific literature on this
point will be reviewed below.

Along the first line of research much has been done to test moment con-
ditions implied by first order Euler equations but there is only little work
on spelling out and estimating time series behavior of asset market impli-
cations. Standard empirical tests based on volatility bounds of Hansen and
Jagganathan (1991) and GMM of Hansen (1982) and Hansen and Singleton
(1982) usually do not address the problem whether stylized asset market
facts vary over the business cycle. In particular, GMM even only tests an
implication of conditional expectations in the Euler equation. We also want
to note that this approach does not guarantee rational expectations in the
sense that the Euler equation holds unconditionally and the product of the
stochastic discount factor and asset returns is not uncorrelated with instru-
mental variables if no constant is included in the information set and, in
particular, if the pricing kernel is replaced with universal approximators as

‘Bansal, Hsieh and Viswanthan (1993) and Bansal and Viswanathan (1993) use a
similar approach to estimate the consumption based capital asset pricing model.



in Chapman (1997), see section 4 for details.

Consequently, first contributions to investigate whether intertemporal as-
set pricing models are capable of capturing variation in stylized stock mar-
ket facts with regard to the business cycle have consisted of analytical and
numerical investigations without imposing empirical tests. Using the frame-
work of a pure exchange economy such as Lucas (1978) assumptions regarding
switching in conditional distribution of consumption are made in Kandel and
Stambaugh (1990, 1991) and habit formation is employed in Campbell and
Cochrane (1999). Yet, due to the log-linear solution technique used in the
latter study standard preferences would lead to constant stylized asset mar-
ket facts. Different regimes are exogenously imposed on stochastic dividends
in Veronesi (1999) to be able to obtain time-varying asset market character-
istics over the business cycle. To capture the link between business cycles
and the stock market it is natural to incorporate production. Rouwenhorst
(1995) chooses the RBC model to show, based on impulse response analysis,
how the asset market reacts to production shocks. Jermann (1998) extends
this approach by introducing habit formation and adjustment costs in pro-
duction to match both the high level of the equity premium and directions
of movements with respect to technology shocks.

In our work we aim to investigate empirically whether the dynamic stochas-
tic growth model is able to replicate time variation in asset price characteris-
tics, in particular the countercyclical movement of the Sharpe-ratio over the
business cycle. In contrast to most of the studies above we do not impose any
distributional assumptions or prespecified regime changes regarding under-
lying variables. Therefore, we derive an appropriate inference scheme that
considers the original nonlinear first-order conditions of the intertemporal
models since nonlinearities have been proven to be important for studying
time series behavior in the asset market. We find indication that an intertem-
poral business cycle model is able to capture this time variation. We want to
note, however, that we are not aiming at matching the level of the risk-free
rate, equity premium and the Sharpe-ratio. Considerable improvement to
match the latter has been achieved by Boldrin, Christiano and Fisher (1999)
by including habit formation and market frictions in an RBC type model.”

To be able to spell out time series behavior of asset market facts of in-

5Qur approach could be extended to their model which is, however, not intended here.
We also could use our approach to solve the intertemporal asset allocation model based on

data for underlying variables imposing less restrictive assumptions than, e.g., in Campbell
and Viceira (1998) and Brandt (1999).



tertemporal asset pricing models empirically we develop computational effi-
cient estimation strategies based on explicit numerical solutions of the non-
linear first—order conditions using the full structure of the model. Therefore,
we extend the expectations approach of Den Haan and Marcet (1990) to in-
corporating nonparametric expectations® and show how estimation schemes
are obtained. Based on Monte Carlo simulations we show its dominance over
the standard GMM approach in terms of small sample performance which is
crucial for empirical economics. We show that there are strong indications
that the Sharpe-ratio moves countercyclically. We support this view again
by the use of Monte Carlos simulations.

The remainder is organized as follows. Section 2 reviews some empirical
evidence of time varying asset market characteristics as well as a method of
how to capture them. We obtain the behavior of the Sharpe-ratio over the
business cycle from a discrete-time stochastic volatility model. In section 3
we spell out asset market characteristics of the intertemporal business cycle
model without imposing distributional assumptions on underlying variables.
Section 4 discusses recent inference schemes for the structural parameters in
dynamic economic model. Here we also present our new method. Section
5 provides results of the Monte Carlo study of the performance of various
estimation procedures. In section 6 we present empirical results of the sig-
nificance of our method applied to U.S. data and present Monte Carlo sim-
ulations on the Sharpe-ratio. Section 7 concludes the paper. The appendix
explains the LLM procedure and discusses some problems pertaining to the
GMM estimation .

2 Time—Varying Stock Market Characteris-
tics

It has been a tradition in modeling asset prices to contrast historical time
series with those generated from the models. Models are required to match
statistical regularities of actual time series in terms of the first and second
moments. As aforementioned most researchers have focused on the (uncon-
ditional) mean and variance of asset price characteristics and attempted to

6This is strongly supported by Kuan and White (1994), Brown and Withney (1998)
and Chen and White (1998) since it is likely to end up with incorrect belief equilibria if
incorrect parameterizations are applied.



match the risk-free rate, the equity premium and the Sharpe-ratio of the
data” with those of the model. As also stated above, recent empirical re-
search moved a step further and has stated that asset market characteristics
are time-varying. Empirical studies reveal conditional mean und conditional
variance in stock return time series, see e.g. the vast literature on stochas-
tic volatility and GARCH models, see Gouriéroux (1997) for surveys. It is
stressed that conditional mean and variance change over the business cycle
and are linked to variables representing real activity. The main finding, for
example, by Schwert (1989, 1990) and Hamilton and Lin (1996) is that equity
returns are more volatile during recession periods.® Whitelaw (1997) finds
empirically, that the Sharpe-ratio varies countercyclically with regard to the
business cycle.

Further indication on the time-varying Sharpe-ratio for U.S. data is re-
ported in Figure 1, respectively. To obtain the time-varying Sharpe-ratio we
follow Hérdle and Tsybakov (1997) in estimating a nonparametric univariate
stochastic volatility model where conditional mean and variance of excess
returns, I, are unknown functions of past returns,

Ry = p(RE[RE(1 = 1)) + o (RE[R*( = 1))e,
with R¢(t) = (R§,...,R{_3) and &, ~ N(0,1). In particular, we estimate
p(RE| Rt = 1)) = E[R|R(t = 1)] = f(R(t = 1); Ou(ney),

and

ou(Rf|R(t — 1)) = \/E [(Rf)2|Re(t — 1)] — E [Rg|Re(t — 1)I
with
B [(R)R( = 1)] = B [(REIR(t = 1] = FR (= DiOyuer). (1)

Function f is implemented by the use of Local Linear Maps (LLM) of Ritter
et al. (1992) as described in appendix 1. In our application, we use 5

"The size of the empirical risk-free rate, equity premium and Sharpe-ratio for U.S. time
series data for the time period 1947.1-1993.3 are reported in Lettau, Gong and Semmler
(2001).

8From the additional findings of countercyclical behaviour of volatility of short—term
interest rates and yields on corporate bonds, relating them to the growth rate of industrial
production, Schwert (1989, 1990) concludes that the variation in stock return volatility is
only partly due to changes in leverage, dividend yields and macroeconomic variables.
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local mappings. The lag length is chosen according to Schwert (1989, 1990).
As Figure 1 shows there is indication for the Sharpe-ratio as a reward-to—
risk measure, to move g countercyclically over the business cycle. Since we
choose conservative specifications of LLMs the high (unconditional) mean of
the Sharpe ratio is not matched.

0.01 0.02 0.03

0.00

0.03 -0.02 -0.01

Figure 1: Sharpe ratio of the S&P500 in a stochastic volatility model.

The bold line represents estimation of the Sharpe ratio. Vertical lines
indicate quarters in recessions defined by NBER. Following the dotted (sup-
port) line it can be seen that the Sharpe ration increases during recessions
and decreases in business cycle up—swings.

3 The Procedure for Solving the Euler Equa-
tion
Since we are concerned here not with the unconditional mean of the equity

premium and Sharpe-ratio but rather with their time variation it suffices, for
our purpose, to take the baseline stochastic growth model as starting point.



In the baseline stochastic growth model of RBC type with constant labor
supply the representative agent is assumed to choose consumption, Cy, t =
1,2,..., so as to maximize current and discounted future utilities (using
discount factor 5 € [0, 1]) arising from consumption. Formally the baseline

model can be stated as

= Ly -1
max F g et
1) 1225 1—7 ]
subject to
Kipn = (1-p K +Y:—=C (2)
YV, = AKY (3)

In the context of this model business cycles are then assumed to be driven
by an exogenous stochastic technology shock, A;, t = 1,2, ..., following the
autoregressive process

InA; =¢lnA; 4 +¢e, & ~ N(0,02) (4)

with persistence ¢ € [0,1]. Power utility function with constant relative risk
aversion v € R™ is a common choice for the utility function.

In contrast to pure exchange economies the stochastic growth model al-
lows for saving by introducing capital stock K;, t = 1,2,.... Therefore, the
choice of optimal policies, (Cy, K;), t = 1,2, ..., is constrained by the typical
budged equation (2) where capital stock is decreased by consumption and de-
preciation, denoted by p € [0, 1], and is increased by output, Y;, t =1,2,.. .,
obtained from the Cobb-Douglas production function (3).

The Euler equation derived from the first order condition of this intertem-
poral optimization problem reads

1= By [Myy1Riii] (5)

-
with stochastic discount factor M;,; = 3 (%—?) and gross return on cap-

ital Ryy1 = oA, K" +1— p. Note, that the Euler equation can only be
solved analytically for v = 1 and full depreciation, i.e. p = 1. Otherwise
numerical solution techniques have to be applied.



From the above outlined baseline model one can spell out the following
asset market implications. From the Euler equation (5) follows that (maxi-
mal) Sharpe-ratio can be obtained from the derivation of volatility bounds
in Hansen and Jagannathan (1991) as

max __ 9t [M,]
KA AT o

In recent research asset market characteristics of intertemporal models
are mostly derived under the crucial assumption of jointly log—normally dis-
tributed asset prices and consumption.” In the framework of the baseline
RBC model, this implies a time invariant equity premium and Sharpe ratio.

In order to evaluate (6) without imposing distributional assumptions on
consumption and the constancy of the equity premium and Sharpe-ratio we
aim to determine E;[M,] and oy [M,] via the in section 2 described mul-
tivariate version of the nonparametric stochastic volatility model of Hardle
and Tsybakov (1997), where, now in the present case, today’s expectations
are determined nonparametrically based on the relevant observable state of
the economy: present capital stock and technology shock.!'® Expectations of
the stochastic discount factor are obtained by

E, [Mt—l—l] =k [Mt+1|Kta At] = f(Kt, Ay 9/\4), (7)

where f is again implemented by nonparametric regression via the Local
Linear Maps of Ritter et al. (1992) described in appendix 1. To proceed
in this way is in line with Den Haan and Marcet (1990) and Duffy and Mc-
Nelis (1997) who determine expectations in the Euler equation and model
the stochastic discount factor of the first order conditions of the stochastic
growth model based on capital stock and the technology shock as condi-
tional variables. Application of nonparametric expectations is recommended
by Kuan and White (1994), Brown and Withney (1998) and Chen and White
(1998) since it is likely that one can end up with incorrect belief equilibria if
incorrect parameterizations are involved.!!

9See Campbell, Lo and MacKinlay (1997).

10Note, that the utility function in our model is time separable.

1Yet,we want to note, however, as a referee has pointed out the Den Haan and Marcet
(1990) procedure may become nonparametric as the order of polynomial increases.
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The standard deviation of the stochastic discount factor (SDF) is esti-
mated by

(M) = B M) = B M ®)

Therefore, expectations of the squared SDF are also determined nonpara-
metrically via

Ey [Mf—i—l] =E [M§+1|Kt7At} = f(KtaAtQ 9/\42)- (9)

Function f is implemented by the LLM of Ritter et al. (1992) as described
in the appendix 1. Here again we use 5 local mappings.

There are numerous numerical solution techniques that have recently been
employed to solve the stochastic growth model. We will provide a short de-
scription of our application of nonparametric methods to approximate con-
ditional expectations of the Euler equation.

The aim of most numerical solution methods is to obtain the control vari-
able C in feedback form from the state variables K and A. Early numerical
solution techniques mostly use linearization techniques, neglecting higher or-
der terms in the Taylor series.'? To spell out the solution more accurately
recently algorithms have been employed that use advanced nonlinear or non-
parametric estimation methods.!® Along the line of Den Haan and Marcet
(1990) and Duffy and McNelis (1997) we model conditional expectations of
the Euler equation using nonparametric regression in the aforementioned
variant of self-organizing maps provided by Ritter et al (1992).

The basic idea of the expectations approach introduced by Den Haan and
Marcet (1990) is that the expectational part of the Euler equation (5) can be
modeled as a function of the observable variables K and A, parameterized
in 0 € R,

v :R* 5 R E, [C{ﬁlRtH} = (K 1, A 0). (10)

12For a survey of linearization techniques see Taylor and Uhlig (1990). Examples are the
log-linear version of Campbell (1994), see also Lettau and Uhlig (1997) and Lettau, Gong
and Semmler (1997) , LQ—approximation of Tauchen (1990), the Chow method using the
Lagrangian multiplier approach (Chow (1991, 1993), Semmler and Gong (1996)).

13Gee, for example, the approximation of conditional expectations in the Euler equa-
tion in Den Haan and Marcet (1990), the method of finite elements in McGratten (1996),
projection methods in Judd (1992), Judd and Gaspar (1996), genetic programming in
Schmertmann (1996) and methods that approximate iteratively the value function of the
dynamic programming formulation of the optimization problem, see Sieveking and Semm-
ler (1997) and Santos and Vigo—Aguiar (1998).

11



Then the Euler equation reads
Cy 7 = (K1, Ag 0). (11)

Den Haan and Marcet (1990) and Duffy and McNelis (1997) parameterize
conditional expectations by polynomial and logistic functions, respectively.
Here, we use the LLM provided by Ritter et al. (1992) as a more powerful
nonparametric function approximator to capture possibly nonlinear dynam-
ics.

Hence the function ¢ may be estimated on the basis of LLM using the
following fixed—point iteration, suggested by Marcet and Den Haan (1990).

Having generated technology shocks, A, via (4) an initial sequence of
control variables, (C, K), has to be computed. A randomly drawn initial
parameter set (%) can be employed in 1. Alternatively, sequences of (C, K)
may be taken from solutions of this procedure for less general functions, e.g.
polynomial regression. Then the fixed—point iteration is formalized through

O:R™ 5ROV =3Oy = (1 -0 A0 i =1,2...  (12)

with 00D = argming||C;;" Riyy — ¥(Ki_1, Ay; 0)|| and adaption rate A. In
each iteration the sequence (C, K) is updated by (11) and (2). If the rational
expectations equilibrium of the model is stable under learning, the parame-
ters will converge, provided A € (0, 1] is small enough.

Employing the assumptions of high complexity of a function such as 1
and suitable choice of A € (0,1] Marcet and Marshall (1994) use the results
of Ljung (1977) to show local convergence for 6, € © to 6, i.e.

lim [|6; — 6" = 0. (13)
71— 00

We apply the aforementioned nonparametric functional form to model .

4 FEstimation Procedures

In recent years there have been efforts undertaken to estimate intertemporal
asset pricing models. Econometric methodologies different from those em-
ployed in early empirical studies of static beta pricing theories have been con-
sidered. While testing hypothesis of beta pricing theories requires methods

12



from time series and cross—sectional analysis, empirical tests of the validity of
first—order conditions arising in intertemporal models are faced with moment
restrictions on functions of random variables. In particular, these conditions
involve conditional expectations of a function f : R™ — R of realizations
of some stochastic vector process z; = (214, Tay, ... Tmy), t =1,2,...,T of
random variables X and a parameter vector 6 describing agents’ tastes,

B [f(x,0)] = E[f(z.,0)|%) =1, t=1,2,....T (14)

with information €2; available in ¢. Typically, f is the product of asset returns
and the stochastic discount factor depending on consumption, risk aversion
and the discount factor.

In the case of linearized models efficient and analytically tractable stan-
dard inference schemes are available.'* Estimating the parameters involved in
the original nonlinear first-order conditions, however, turns out to be more
difficult. In principle, there are three types of estimation strategies. It is
worth summarizing them briefly:

1. Application of the Generalized Method of Moments (GMM) introduced
by Hansen (1982).' Tt does not require the solution of first—order con-
ditions, but may be inefficient, as frequently mentioned, due to omitting
structural information of the model. Simulations in the next section
demonstrate that this approach is biased by assuming ergodicity of
f(z,0). If one uses conditioning information via instrumental vari-
ables, as outlined by Hansen and Singleton (1982), in our simulations
biases are significantly reduced. It is also quite important to note that
the orthogonality condition tested in this approach is an implication
of the moment condition but not an equivalent statement. A more
detailed discussion of this issue is provided in appendix 2.

2. Inference about structural parameters based on numerical solutions of
first—order conditions. These methods are designed to be efficient, but

14See, for example, Hansen and Sargent (1980), Chow (1991,1993) and improved versions
by Semmler and Gong (1996), Smith (1993), Campbell (1994), Lettau, Gong and Semmler
(1997) and Chow and Kwan (1998).

15GMM has frequently been employed to test the Consumption based Capital Asset
Pricing Model. Applications of GMM estimation to the nonlinear Euler equation in the
first—order conditions of the stochastic growth model of RBC type can be found in Chris-
tiano and Eichenbaum (1992) or Feve and Langot (1994).

13



they turn out to be computationally intractable and are associated
with weak consistency results. Examples are the indirect inference ap-
proach of Gourieroux, Monfort and Renault (1993) and the maximum
likelihood approach of Miranda and Rui (1997) who require the crucial
assumption that asset returns follow a first order Markov process and
further use a finite approximation to an infinite optimization problem
via truncation.

3. Inspired by the parameterized expectations approach of Den Haan and
Marcet (1990) to solve rational expectations models numerically, our
approximation method of solving the Euler equation, as discussed in
section 3, applies a computational tractable inference scheme for the
structural parameters that is efficient and consistent. Although it does
require numerical solutions, no structural information is omitted. Our
nonparametric method solves the rational expectations model numer-
ically but also delivers an estimation method for the above discussed
intertemporal model.

The estimation method of case 3. can be derived as follows. Measuring
the exogenous sequence of technology shocks, A, by the Solow residual the
set of parameters to be estimated reduces to ¢ = (f,7,p). We start by
considering actual time series of consumption and capital stock, denoted
by C* and K*, respectively, as the outcome of the representative agent’s
optimization problem of the stochastic growth model of RBC type. Assume
that in equilibrium, (C*, K*), the fixed—point algorithm (12) with A = 1
exhibits stability for true parameters ¢* and

1C* = C@) < IC" = C()l " # ¢, (15)

where C(¢p) results from applying one step of (12) based on solution (C*, K*)
and ¢.1® Thus, we can estimate the structural parameters of the baseline
stochastic growth model by

~

¢ = argmin ||C* — C(¢p, 0)|| (16)

~

with 0 = argming||BC} . Ry, — (K7, Af;0)| and (C(g,0), K(p,0)) re-
sulting from (11) and (2). This minimization could be solved by standard

16This can be shown numerically.

14



nonlinear optimization routines. A well known example is the Newton algo-
rithm. If this optimization problem is not tractable by those methods, alter-
natively, heuristic search algorithms such as Simulated Annealing or Tabu
Search, developed to overcome the problems associated with the standard
stochastic descent algorithm, could be applied.

To use full structural information of the stochastic growth model of RBC
type ¢ may be estimated as follows:

¢ = argmin|[|[K* —Y + LK + LC(, o), (17)

where L denotes the lag-operator. Results of Ljung (1977) apply directly to
show convergence, efficiency and asymptotic normality.

5 Test of the Estimation Procedures

To evaluate the performance of GMM and the nonparametric estimation
method to estimate the parameters of the stochastic growth model as above
discussed we proceed in two steps.

1. Numerical solution of the stochastic growth model using the expecta-
tions approach of Den Haan and Marcet (1990) extended by nonpara-
metric expectations given the structural parameters .

2. Employing GMM and nonparametric method to estimate structural
parameters, ¢, based on simulated time series.

In our numerical investigations we employ the calibration parameters
from Den Haan and Marcet (1994), reported in Table 1.

Table 1: Parameters used in simulations of the RBC model.

v p « ¢ o
95 5 0 0.33 0.95 0.1

In order to approximate conditional expectations in the Euler equation
(5) we implement the fixed—point iteration (12) to obtain sequences of Cj,
K, t=1,....,T with T = 200 as follows:

15



Applying @ the stochastic shock, (A4;), t = 1,...,T, is generated follow-
ing (4). An initial sequence, (C?,K?), t = 1,...,T, is obtained from the
solution of a first—order polynomial function applied to 1.!” Here, LLM with
5 reference vectors is set up to approximate conditional expectations in (5).

The time series simulated using estimated v serve as a basis for various
tests of simulation accuracy as described in Taylor and Uhlig (1990).

Having generated (Cy, K;),t = 1,...,T, we are able to evaluate the per-
formance of different estimation schemes proposed for the stochastic growth
model. We perform Monte Carlo experiments with 1000 replications. The
box plots in Figure 2 show that [ is estimated quite accurately by all esti-
mation procedures under consideration.
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Figure 2: Monte Carlo results for estimating /3.

The figure shows box plots of Monte Carlo results for estimates of
based on GMM, GMM with instrumental variables and our nonparametric
expectations approach.

17Results of this iterative estimation procedure are provided in Den Haan and Marcet
(1994).
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Estimation of 7, however, turns out to be more difficult. The bias of
GMM estimation is large as reported in Figure 3.

0.97

0.986
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Figure 3: Monte Carlo results for estimating ~.

The figure shows box plots of Monte Carlo results for estimates of ~
based on GMM, GMM with instrumental variables and our nonparametric
expectations approach.

Our nonparametric estimation scheme performs significantly better, but
the bias does not vanish. Numerical studies of Tauchen (1986), Christiano
and Den Haan (1996), Hansen, Heaton and Yaron (1996) and Smith (1999)
also report poor small sample performance of GMM estimation of intertem-
poral models.

6 Empirical Results on Asset Market Char-
acteristics

Subsequently, we estimate the structural parameters of the stochastic growth
model based on U.S. data. The time series are at quarterly frequency and
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range from 1960:1 to 1993:4.'® Technology shocks are measured by the Solow
residual with respect to a Cobb-Douglas production function with capital
share @ = .33. Following the discussion in the previous section we apply our
nonparametric inference scheme to estimate ¢. Convergence of nonlinear
least squares via Newton algorithm applied to (17) based on empirical time
series is obtained and leads to the parameter estimation as reported in Table
1. Since we have reasonable a priori knowledge concerning depreciation rate
and capital share these parameters are fixed, indicated by bars.

Table 2: Parameter estimates of the RBC model for U.S. time series.

o (std. dev.) B (std. dev.) p a
0.7131  (0.0465)  0.9548  (0.0279) 0.9750 0.3300

To obtain time-varying asset market characteristics we employ the above
discussed stochastic volatility model of Hardle and Tsybakov (1997) to achieve
conditional expectations and variances of the stochastic discount factor based
on lagged capital stock and technology shock as described in section 3. Hence,
time-varying stylized facts such as the maximal Sharpe-ratio can be com-
puted by (6).

8Data are taken from Citibase (1995).
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Figure 4: Maximal Sharpe ratio in the estimated RBC model.

The bold line represents estimations of the Sharpe ratio, o;. Vertical
lines indicate quarters in recessions defined by NBER. Following the dotted
(support) line it can be seen that the Sharpe ration increases during recessions
and decreases in business cycle up—swings.

In Figure 4 estimates of the Sharpe-ratio are illustrated. As hypothe-
sized in related literature and using a stochastic volatility model as discussed
in section 2, there is some indication for countercyclical movement of the
Sharpe-ratio. As indicated by the broken line, the expected excess returns
relative to risk may increase in recessions, i.e., in periods of low economic
activity and decreases in periods with high level of economic activity, and
decrease in upswings with high level of economic activity. Thus, the Sharpe-
ratio appears to move countercyclically.

In the following we want to provide Monte Carlo simulations that supports
our results of Figure 4, i.e., that the Sharpe-ratio increases in the recessions
as defined by NBER. Therefore, we consider an experiment where quarterly
data for the stochastic discount factor, consumption and technology shocks
in the period 1960:1 to 1993:4 are normally distributed, such that resulting
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Sharpe-ratio does not move over time. Generating normally distributed se-
quences M,, C;, A;, t = 1,2,..." where t = 1,2,... represents quarterly
time period 1960:1 to 1993:4 as used in empirical investigation, and applying
our procedure for estimating Sharpe ratio we want to find significant level of
our finding in Figure 4 that Sharpe ratio increases in all 6 recessions. The
experiment is repeated 1000 times and the number of cases where Sharpe-
ratio increases in s = 6, 5, 4 recessions is denoted by n,. Results in Table 2
show that our method for estimating Sharpe-ratio yields sequences of the
Sharpe-ratio increasing in all 6 recessions in period 1960:1 to 1993:4 as de-
fined by NBER in 1.6% of all recessions although Sharpe-ratio has constant
mean and deviations are random by experimental set up. Hence, we would
like to conclude that our result of Sharpe ratio increasing in all recessions in
Figure 4 is significant on 1.6% level with respect to our simulation.

Table 3: Sharpe ratio in simulation with gaussian My, Cy, A;.

5 4 5 6

20326 0.114 0.016

We would like to interpret this as a tentative result of our methodology to
match time varying asset price characteristics of the stochastic growth model
with empirical facts.

7 Conclusions

The aim of this work was to explain asset market characteristics that have
been found in a variety of empirical studies in different types of frameworks.
We have here studied asset market characteristics in the framework of an
intertemporal asset pricing model. We were particularly interested in study-
ing time- varying asset market characteristics. For the purpose of this paper
it was sufficient to employ the baseline stochastic growth model. We have

19Tn this experiment the mean is set to zero and the standard deviations are set equal
to sample standard deviations of the estimated stochastic discount factor, consumption
stream and technology shocks, respectively.
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solved and estimated the baseline model nonparametrically and find indica-
tion that it is capable of capturing countercyclical movement of the Sharpe-
ratio over the business cycle. Similar results have been found, although in a
different framework, by other recent empirical studies, Yet, as we have men-
tioned, we were not aiming at capturing the high (unconditional) risk-free
rate, equity premium and Sharpe-ratio. Of course, the next step would be to
pursue our study of time-varying asset market characteristics by allowing for
an extended intertemporal model that admits technology shocks with greater
variance, other utility functions (utility function with habit formation) and
adjustment costs of capital. This might be helpful to also match the levels of
risk-free rate, equity premium and the Sharpe-ratio. An appropriate starting
point for such a study could be the recent paper by Boldrin, Christiano and
Fisher (1999).
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Appendices

7.1 Appendix 1: Nonparametric Local Linear Maps

In empirical finance nonparametric methods to estimate conditional mean
and variance of time series are now widely applied. Therefore, nonparamet-
ric methods, either global or local techniques are used. Well known examples
are neural networks or kernel regression.?’ Local techniques offer the advan-
tage that they only consume a small amount of computation time, and, at the
same time, they are capable of modeling complex time series. Furthermore,
behavior of agents may not be the same in different economic conditions,?!
and may, therefore, be well described by state dependent functions of local
nonparametric techniques.

In this work we decide to implement with the Local Linear Maps (LLMs)
of Ritter et al. (1992). LLMs have been proposed independently by Stokro,
Umberger and Hertz (1990) as a generalization of the widely used technique
of Moody and Darken (1989). It is a variant of self-organizing neural net-
works and improves drastically convergence properties of standard neural
networks such as multilayer perceptron with backpropagation while it is ca-
pable of modeling complex structures as, for example, generated by chaotic
maps. Subsequently, we provide a short description of the LLM.

To approximate an unknown functional relationship between variables
x € R and y € R, on the basis of data y;, and z;, t =1,2,...,

f: yt:f(xt)aRm_)R:

one first has to specify a function ¢(x;, ¢) parameterized in ¢ that represents
a class of functions including f.?? Then an estimation procedure has to be
designed to obtain ¢ so as to minimize expectations of the expected loss
function L, the so called risk function of Vapnik (1992),

R(9) = / " Ly b, 6))dP (o, y)

20For a detailed discussion see Hirdle, Liitkepohl and Chen (1997).

21E.g., many studies come to the conclusion that risk aversion varies over the business
cycle.

22We call a regression function nonparametric if it cannot be characterized by specific
distributions.
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with L(y, ¢ (z, ¢)) = [y —+(x, ¢)||, joint probability P(x,y) and [|-|| denoting
the ly—norm. As P(x,y) is not known it is suggested to minimize the empirical

risk function
T

Remp = T_l Z L(yta ¢(xta QS))
t=1

based on observations x;,y;,, t =1,...,T.

Here, we choose LLMs to implement #(+), i.e., we use n linear maps that
are used locally in input space. In particular, LLMs are built up by n units,
r=1,...,n, representing regions of the linear maps. Each unit consists of a
vector in the input space, w, € R™, the so called reference vector, a vector in
the output space, v, € R, and a coefficient matrix A, € R x R™. Parameters
wy, v, and A, may be summarized in . The output of an LLM for an input
vector x € R is then computed as

gt - fLLM(xt|9) = Ug + As(xt - ws)

with

s = argmin, ||x; — w,||.
The vector xz; is processed by the linear map associated with the nearest unit
in input space. Note, that reformulating f; s by

?)t = fLLM(xtW) =+ Bsxta Oy = Vs — Asws: 55 - As

offers an expression familiar to econometricians.
An appropriate adaptive estimation scheme for parameters A, w and v is
provided by Ritter et al. (1992),

A wg = €y — wy),
A Vs = Gv(yt - xt) + AsAws:
A Ay =ead (g — ) (2 — wy)

with dy = ||g — ws|| and learning rates €,, €, and €4.? Convergence of

(w,v, A) to its equilibrium state (w*,v*, A*) is proved for similar learning
schemes in Ritter and Schulten (1989) using the Fokker—Planck equation ap-
proach.

23Note, that initial values for parameters are choosen randomly.
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To show approximation and generalization ability of the technique de-
scribed above, in Woehrmann (2001) this technique is applied to recover
complex time series such as logistic map and the Mackey-Glass equation
with encouraging results.

7.2 Appendix 2: On GMM with Instrumental Vari-

ables

In their influential contribution Hansen and Singleton (1982) propose a test
for nonlinear rational expectations asset pricing models. It is an instrumen-
tal variables approach to generalized method of moments of Hansen (1982)
based on the implication of the models’ Euler equations that the product
of stochastic discount factor and asset return is orthogonal to any variable
in the information set. However, we would like to point out that rational
expectations are not guaranteed by the proposed algorithm in a number of
empirical applications, e.g. Bansal, Hsieh (1993), Bansal and Viswanathan
(1993) and Chapman (1997), where no constants are included in information
sets and pricing kernels consist of universal function approximators such as
polynomials or neural networks. In those cases testing nonlinear rational ex-
pectations asset pricing models based on Hansen and Singleton (1982) may
be inconsistent with the models’ first—order conditions in the sense that the
proposed inference scheme does not ensure expectations in the Euler equa-
tions holding unconditionally. This issue is discussed subsequently.

First—order conditions of widely investigated nonlinear rational expecta-
tions asset pricing models, such as described in section 3, involve conditional
expectations of a function f : R™ — R of realizations of some stochastic
vector process Ty = (T14, Taty .- Tmy), t = 1,2,...,T, of economic and fi-
nancial random variables X € R™ and a parameter vector § € © C RF
describing agents’ tastes and production technology,

E, [f(xt+17 9)] =FE [f(xt+1: 9) |It] - 07 = 17 2: SRR T7 (18)

where expectations are built upon the information set Iy = (I14,...,L,4).
Typically, f is the product of asset returns and the stochastic discount factor
depending on consumption, risk aversion and the discount factor.
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To test the Euler equation (5) empirically using conditional information
based on the instrumental variable approach to GMM of Hansen and Single-
ton (1982) has become a common procedure. Therefore, it is tested whether
f(z;,0) and any element in the information set I;, are orthogonal, i.e.

[f(2411,0) ® L] = 0, (19)

which is an implication of (5). Suppose 3 6* € © such that

T
Jim T Z f(@141,67) ®T, =0 (20)
it is possible to test (1_9) empirically by determining parameters 0 that min-
imize sample means f;(§) = T~' 3., f(21,0) ® I, through minimizing the
quadratic form R B B

0 = 6 € Oargminfr(0)'Qfr(0) (21)

with a symmetric, positive definite matrix of weights €2. The weighting ma-
trix derived in Hansen and Singleton (1982) allows for an estimator based
on a local optimization scheme such as the Newton algorithm, é, that is con-
sistent and asymptotically efficient, i.e. has minimal asymptotic covariance
matrix.?*

Hansen and Singleton (1982) state that (19) is an implication of (5), i.e.
Ey[f(z141)] = 0= E[f(2441,0) ® L] = 0

should hold.?® Furthermore, it follows straight forward that expectations in
the Euler equation (5) hold unconditionally. Thus, E; [f(x:+1)] = 0 should
imply

Elf(xi11,0) @ L] = E[f(2111,0)] = 0.

However, if no constant is included in the information set there may be
functions f having E'[f(x¢,0)];4] =0 fori=1,2,...,n, and E[f(z,0)] # 0
with

24Small sample performance, however, is not satisfactory as pointed out by Tauchen
(1986). To overcome this problem Kitamura and Stutzer (1997) and independently Imbens,
Johnson and Spady (1998) improved GMM inspired by principles of information theory.
25Note that E without index ¢ indicates the sample mean.
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L E[Li) #0, E[f(z,0)] E[Liy] = — [f(21,0), [;] # 0, or
2. E[Li)] =0, E[f(x,0)| E[Liy) = = [f(24,0), ;4] =0,

for i = 1,2,...,n.2 Tt follows that the objective function in (21) could
be zero although the sample version of the Euler equation (18) does not hold
unconditionally. Note that the objective function in (21) in combination with
a constant in the information set forces E [f(x¢,#)] = 0 since the covariance
of f and a constant is zero.

One could conjecture that the simple parameterized form of f in intertem-
poral asset prices models may not lead to functional forms such that cases
1. and 2. hold for realizations. This justifies the empirical test in Hansen
and Singleton (1982) —and other studies— where no constants are included in
information sets.

However, recently, pricing kernels arising from the consumption based
capital asset pricing model or the baseline real business cycle model have
been replaced with universal function approximators such as polynomials
or neural networks to obtain smaller pricing errors, see, e.g., Bansal and
Viswanathan (1993), Bansal, Hsieh and Viswanathan (1993) and Chapman
(1997).2" Since any function can be approximated by those pricing kernels
driving the objective function in (21) to zero based on a (finite) sample is
not a difficult task. But as information sets in those studies do not include
constants, functions f may have been found that satisfy cases 1. or 2. for
1=1,2,...,n, and thus do not guarantee rational expectations as discussed
above. Furthermore, the Bansal, Hsieh and Viswanathan (1993) and Chap-
man (1997) do not report out—of-sample performance although nonparamet-
ric asset pricing models are exposed to the danger of overfitting.

We would like to conclude that it remains to re—check whether the Euler
equation holds unconditionally in those nonparametric asset pricing models
and, in addition, out—-of-sample performance should be investigated. Further
we would like to mention that including a constant in the information set
permits the Euler equation to hold unconditionally.

%Note that B [f (21, 0) L] = B [f(z1,0)] E [L]+[f (20.0), L)), i=1,....n.

27One should not argue that the equity premium puzzle is solved because this nonpara-
metric approach is purely data driven and does not deliver explanation from an economic
point of view.
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