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Abstract

In the analysis of censored failure time data, the Cox proportional hazards model
assumes that the regression coefficients are invariant in time and across individu-
als. In this paper we propose an extension of the Cox model for clustered survival
data, which allows general, random effects (frailties), and time-varying regression
coefficients, which are smooth functions of time. We fit the model using a mixed-
model representation of penalized spline smoothing, similar to Cai, Hyndman &
Wand (2002). This offers a unified framework for estimation of the baseline haz-
ard, smooth effects and random effects. The estimator is computed using a hybrid
Monte Carlo EM algorithm. Variance estimators are calculated in the same hybrid
way adapting the classical Louis formula (Louis, 1982) to our model. A marginal
Akaike information criterion is developed to assist the selection of an appropriate
model. The model is then applied to unemployment data taken from the German
Socio-Economic Panel. The duration of unemployment is modelled in a flexible way
to depend on a set of covariate and on individual random effects.
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1 Introduction

The Cox (1972) proportional hazards model has been for the last 30 years the most
popular regression model for the analysis of censored survival data. In recent years
a growing body of work has expanded this model in several ways. One of the most
obvious assumptions of the model, as its name suggests, is the proportional hazards
(PH) assumption. Much work has been done to test or validate the PH assumption,
see Sasieni (1999) or Therneau & Grambsch (2000) for an overview. In the presence
of departure from the PH assumption different estimation methods have been pro-
posed which include both smoothed estimates and tree-based parsimonious partition
of the time axis; a review of some of the existing literature can be found in Xu &
Adak (2002). Another implicit assumption of the partial likelihood inference under
the standard Cox model is the independence of observed survival times. This is not
fulfilled for clustered data or if there are multiple duration times observed for the
individuals. Such dependence can be accommodated by proportional hazards mixed
models (PHMM) which include random effects, either as frailties which modify the
baseline hazard, see e.g. Vaupel, Manton & Stallard (1979), Nielsen, Gill, Ander-
sen & Sgrensen (1992), Klein (1992), or as general regression terms, see Ripatti &
Palmgren (2000), Vaida & Xu (2000). A general overview is found in Hougaard
(2000). For approaches in the econometric area we refer to van den Berg (2001).
Frailty models however, still assume proportional hazards among subjects from the
same or different clusters, even though Stare & O’Quigley (2004) demonstrate some
dualities between frailty models and smooth effects for baseline hazard estimation.
In this paper we propose a general model which includes both random effects and
smooth time-varying regression effects. The estimation uses the mixed-model rep-

resentation of penalized splines (P-splines, see Eilers & Marx, 1996, Ruppert, Wand



& Carroll, 2003), thereby combining the estimation of both mixed effects and spline
effects in the same framework. Kauermann (2004b) uses P-spline smoothing in a
mixed-model representation to estimate time dynamic effects in the fixed-effects
only Cox-type regression model, while Cai, Hyndman & Wand (2002) used P-spline
estimation of the hazard function with no covariates. The latter idea is extended
to proportional hazards models in Cai & Betensky (2003). Recently, Therneau,
Grambsch & Pankratz (2003) propose penalized estimation for Frailty models. The
combination of frailty and smoothing has been applied by Duchateau & Janssen
(2004) using gamma distributed frailties and penalized partial likelihood estima-
tion. We go a similar route but take more advantage of Generalized Linear Mixed
Model theory. In our model, the spline effects, treated as random effects, and the
random cluster, or frailty effects are two different type of random components, and
the marginal likelihood resulting after integrating them out does not have an analytic
form. To overcome this problem Laplace approximation seems a natural candidate.
However, since Laplace approximation leads to underestimation of the random ef-
fects’ variance, a more elaborated fitting routine is necessary. We use a Monte Carlo
EM algorithm along the lines of Ripatti, Larsen & Palmgren (2002) or Vaida &
Xu (2000), see also Booth & Hobert (1999), Dempster, Laird & Rubin (1977) and
Klein (1992). Due to the large number of random components, however, sampling
of the random effect is not straightforward, and employing the rejection sampler
would lead to severe low acceptance rates. Based on asymptotic justifications, we
treat the spline and random effects separately, and we apply the numerically inten-
sive sampling step only to the cluster or frailty effects, but estimate spline effects
using a Laplace approximation. Such a hybrid Monte Carlo EM algorithm has been

suggested and studied by Lai & Shih (2003). The hybrid idea has a number of



advantages. Estimation becomes both numerically more feasible and faster. More-
over, it is possible to extend Louis’ (1982) formula to derive confidence bands for

the smooth curve.

In multivariable models a particular focus is on model selection. In our context this
means, for instance, to determine the set of covariates with time dynamic effects
and time constant effects, respectively. This can be carried out in principle by ex-
tending the results on testing in Linear Mixed Models provided in Crainiceanu &
Ruppert (2004) or Crainiceanu, Ruppert, Claeskens & Wand (2004). However, here
we pursue a different route by minimizing an Akaike information criterion based
on the marginal likelihood. This likelihood is computed following a similar hybrid
algorithm as for estimation. Using this marginal likelihood, an Akaike criterion,
called marginal AIC, is easily derived. The marginal likelihood value is also used to
control the EM convergence and to observe Monte Carlo variability. In particular,
we use the simple idea of increasing the Monte Carlo sample size in the EM steps
if the marginal likelihood does not increase and terminate the iteration once the

marginal likelihood increments are negligible.

The model is applied to data from the German Socio-Economic Panel. The focus is
on the analysis of duration of unemployment for a subsample of individuals reported
at least once unemployed between the years 1990 to 2000. Individuals may expe-
rience more than one spell of unemployment, which leads to multiple, correlated
duration times. Moreover, we consider the possibly time-dynamic effect of covari-

ates gender, nationality and age.



The structure of the paper is as follows: Section 2 presents the model and draws the
link to Poisson data and Generalized Linear Mixed Models. In Section 3 we discuss
the hybrid version of the Monte Carlo EM including variance calculation. In Section
4 we suggest the use of the Akaike information criterion for model selection. The

data example and simulations are included in Section 5.

2 Smoothing mixed-effects survival model

2.1 Model specification

Let t;; be the observed j-th survival time in cluster 7. We assume independence
between the clusters, but survival times within a cluster are considered as realizations
of dependent variables. In our data example, indexes i, 7 refer to the j-th spell of
unemployment of individual 7. We denote with ¢;; the event indicator taking value 1
if the observed survival time is the true survival time and value 0 if the true survival

time exceeds the observed time. The hazard function for each event is modelled as

hij(t) = exp {Bo(t) + x4 B:(t) + wija;} (1)

where z is a set of covariates and (y(t) and (3,(t) are smooth but otherwise unspec-
ified functions, coefficients a; are cluster-specific random effects with design matrix
w;; built from covariates x;; (this is not a technical requirement, but a reasonable
assumption in practice). Model (1) extends the classical proportional hazard model
in two ways. First, covariate effects (,(t) are allowed to vary with survival time ¢.
Secondly, a random or frailty effect is included to accommodate the dependence of
survival times within a cluster. In the paper we will also include semiparametric
models where some effects are time dynamic while others are fixed, that is 3,(t) = .

To keep the notation simple we will not explicitly emphasize these models in the



estimation step, as they result easily as a special case.

Estimation of the smooth components in (1) is pursued by penalized spline fit-
ting (P-spline). The approach traces back to Eilers & Marx (1996) with a gen-
eral introduction and recent developments provided in Ruppert, Wand & Car-
roll (2003). We first demonstrate the recipe of P-spline fitting for the baseline
Go(t). We approximate the smooth unknown function (5(¢) by some high dimen-
sional basis B(t), say, so that Gy(t) ~ Boo + B(t)by, where [y gives the intercept
listed explicitly here. A convenient choice for B(t) are truncated polynomials, e.g.
B(t) = ((t —to)+, (t —t1)4,...,(t = tp)+) where (t); = ¢ I(t > 0) with I(.) as the
indicator function and ty < t; < ... <, are fixed knots covering the range of the
observed failure times. One might for instance choose ty = 0 and ¢; as the observed
[-th ordered failure time. The dimension p is thereby chosen in a lavish way so
that the bias (y(t) — (Boo + B(t)bo) has a negligible size compared to the estimation
variability. Likewise, we replace (3,(t) componentwise by £;(t) ~ By + Bi(t)b; for

l=1,2,...,q, where ¢ is the number of covariates.

Denoting with z;; = (1, ;) and By = (Boo, Boz)”, the log-likelihood conditional on

random effects a = (al, ..., al) takes the form
n ng tij

1.(8,b,a) = Z Z {Zi]ﬂo + 2B (ti;)b + wij a; — /o exp {2400 + 2;;B(1)b + wij a;} dt |, (2)
i=1j=1

where B(t) = I,11 ® B(t) with ® denoting the tensor product and b = (b, ..., b])".
The second component in (2) is the integrated hazard. In the case of proportional
hazards this integrated hazard factorizes into the cummulative baseline hazard times
the covariate effects. The resulting cummulative baseline hazard can then be re-

placed by a step function with jumps at the observed time points, which leads
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to the well known partial likelihood function suggested by Cox (1972). We go
a similar route here by approximating the hazard in the integral by using New-
ton’s method with knots defined on the observed failure time points, in the fol-
lowing denoted by 0 = 79 < 7 < ... < Tg. Then [" hy(u) du is replaced
by Ykire<ts, Pij () (T — Ti—1). Let now Ry, denote the risk set at time point 7,
k=1,...,K, that is Ry = {(4,7) : t;; > 7}. Accordingly, let F}, denote the failures
at time point 74, that is F, = {(¢,) : t;; = 7, and d;; = 1}. The likelihood (2)
based on the integral approximation is then rewritten as follows. For notational
simplicity we define H;;; = (z;; ® B(7), Wi;), where W;; is the overall design matrix
constructed from w;; such that W;; a = w;; a;. Finally, we set d = (b",a”). This
allows to write the approximate likelihood as

K K
(B, d)=>" Y (2j8+Hyud)—>_ Y exp{z;f+ Hijd+ o} (3)
=1 (i,

J)EFk k=1 (i,)€ %

with o, = log (7, — 7,—1). Note that {((,d) is equivalent to the likelihood of pseudo-
Poisson data Y for (i,5) € Ry, k = 1,..., K where Y, = 1if (i,j) € F; and 0

otherwise. These data follow the model
Yijkja ~ Poisson (A = exp {z;; f + Hijp d + o }). (4)

This connection will be exploited subsequently by fitting model (4) to Y, (see also

Kauermann, 2004b).
2.2 Parameter estimation

The high dimensionality of b forbids simple maximization of the likelihood. Instead,
coefficients are penalized in ridge regression style. This can be accommodated by
imposing an “a priori” distribution on b:

b~ N (0, diag(o; D‘))
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where o} = (03,...,07) is the vector of a priori variances and D~ as generalized
inverse of some penalty matrix D chosen in accordance to the basis used. For

truncated polynomials identity matrices have been proven to work well (see Ruppert,

Wand & Carroll, 2003). We also assume that
&iNN(O,Ea), 1= 1,...,n.

The joint normality for d = (b7, a”) now provides with (3) a Generalized Linear
Mixed Model (GLMM) with the marginal likelihood resulting by integrating out a

and b, that is

(5, %,02) = [ [ exp {1(5,b, )} 6(b,ding(o D7) bla, diag(S)) dadb  (5)

where ¢(.) denotes the normal density. The maximization of (5) can be achieved
by a Laplace approximation (see Severini, 2000, Therneau, Grambsch & Pankratz,

2003)

- 1 1. .
lm(ﬁ’gg’a2> ~ exp |:l(ﬁab7 d) - 5 ATEctld - 5 delag<OZ_2D>b (6)

a

1 1
—5 log |X.| — 5 log ’diag(algD_)’

1 21(6,b,a) , L
2 log {|3(a, b) d(a,b)T ding (2,7, o1 D)’H

where r denotes the dimension of a, and @ and b are the maximizers of

1 1
K@@a%—yﬁEf@—§Wngq4Dﬂx (7)

In particular, (7) plays the role of a penalized likelihood with X! and 0,2 D as
penalty parameters, [ = 0,...,q. If some of the smooth components are time con-
stant, that is e.g. [;(t) = By, this is easily accommodated by penalizing b; to zero

which leads to reduced likelihood with components related to o7 excluded.



3 Monte Carlo EM

3.1 Standard Monte Carlo EM

The Laplace approximation can introduce bias (see for instance Breslow & Lin,
1995 or Shun & McCullagh, 1995). A convenient way to circumvent this is to use an
EM algorithm, at the price of additional numerical effort. Booth & Hobert (1999)
discuss a Monte Carlo version of the EM algorithm which is picked up here (see also
Vaida, Meng & Xu, 2004). Let f(Y'|d) denote the Poisson density of Y given in (4).
With ¢(d, H) we denote the “a priori” distribution of d with mean zero and variance
matrix H, where H is block-diagonal with diag(c?D ™) and diag(3,) on its diagonal.
Fixing By, 3., o and X, at their current estimate, denoted with superscript (s),

and considering d unobserved leads to the Expectation step

Q (8,02, 5| B9, 072y = E{log[f (Y] d) ¢(d, H)] | Y, 3¥, 07", 5}

The expectation is now computed by Monte Carlo simulation from the distribution
g (d|Y) < f(Y|d) ¢(d, H), using rejection sampling. Booth & Hobert (1999) suggest
to use as proposal density h(d) = ¢(d, H). However, due to the large dimension of
d, in our setting this leads to a very small acceptance rate. A more suitable proposal
density h(d), as in Ripatti, Larsen & Palmgren (2002), is the normal density with
mean d the penalized fit resulting from (6) and variance
-1
Viju = {Z > z]k Hiji exp(niji) + diag(o; D, % )} 0
k=1 (i,j)€Rk

where 7,5 is the linear predictor and ¢ > 1 is an inflation factor to be defined
below. Let now log(c) be defined as log(c) = max{log g(d|Y) — log h(d)} where the

logarithm is used for numerical reasons. Note that the maximum is achieved at d



and the second order derivative equals

0*log g(d|Y) 0*logh(d
ad od" od (9dT B

Z Z z]k J/f exp(nmk) +dlag(o-l D by )} (1 - 1) 5

k=1 (i,j)€Rx 0
which is negative definite as long as ¢ > 1. A proposed d* from h(d*) is now accepted
with probability 7(d*) = exp {log g(d*|Y") — log(h(d*)) — log(c)} where again the

logarithm is used for numerical reasons.

3.2 Hybrid Monte Carlo EM

The acceptance probability in the above Monte Carlo EM is low, in particular for a
large dimension of the design matrix z;;. A remedy is suggested by the fact the that
random coefficients a and b follow two different asymptotic scenarios. For cluster
effect a we assume that with growing sample size the number of clusters increases
while the number of observations within a cluster is limited. In particular, if the
number of replicates within a cluster is small, Laplace approximation of the integral
(5) is not advisable (see e.g. Shun & McCullagh, 1995). In contrast, for spline
coefficients b we assume that the dimension of the basis is fixed in advance and
kept fixed for growing sample size. This in turn implies that information on each
coefficient of b is growing with the sample size while the dimension of the integral is
kept fixed. In this scenario the Laplace approximation provides satisfactory results
and it approximates the integral with order O(n=1) (see e.g. Severini, 2000). Along
the lines of Lai & Shih (2003) we therefore suggest to use a hybrid routine, with a

Laplace approximation for b and Monte Carlo EM for a in (5). Let

1(8,b,0%,0%) = log [ exp{le(8, b, a)(a, diag(£.))} da )

denote the likelihood after integration with respect to a. The marginal likelihood in
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(5) is then approximated by

Ln(B,02,02) =~ Uy(B,b,0%,02) + log ¢(b, diag(c?D™))
11 _82lb(ﬁ76705702) D)

of

5 log 9% LT + diag( (9)

where b is the maximizer of the penalized likelihood I,(3, b, 02, 02)+log ¢ (b, diag(afD_)) :
Apparently, b is not available analytically since integration over a is involved. How-
ever, we can use a Monte Carlo EM, like above, but this time for a only. In principle
this means we treat a as random and (3 and b as parameters where the second is esti-
mated in a penalized manner. The remainder of this section explains this approach
in more technical details. Let therefore b®) be a current maximizer (estimate) of b.

Then the hybrid E-step results through the QQ Function

Qy(B, b, 02, 52| B9, b) 62 %))

where 1,(3,b, 02]a) is a penalized log likelihood defined through
1.(8.b, a) +log ¢ (b, diag(s7 D7) .

The expectation in (10) is carried out with respect to distribution f(alb®,Y") (ig-
noring the dependence on parameters for notational simplicity). In analogy to above

we evaluate it by rejection sampling, using the proposal density
a* ~ h(alb™) = N(a, pVappy),

where @ is the maximizer of f(Y[b®®),a)¢(a, diag(2,)) and

-1
K
Valby = {Z Y WyW exp(nige) + diag(S, 1)}

11



with W;; as defined in Section 2.1. Defining with log ¢, = max {log g(a|b®,Y) —log h(a]b(s))}
where g(a|b®,Y) = f(Y[b®),a)p(b®), diag(c? D)) ¢(a,diag(X,)) provides the ac-

ceptance probability

Ta(a™) = exp {log g(a*|b®,Y) —log h(a*|b®) — log ca} :

Based on a sample a*', ..., a*"" the subsequent Maximization Step results by updat-
ing estimates B(s) und b simultaneously using a penalized likelihood. Moreover,
an estimate for o7 is available from Laplace approximation (see for instance Kauer-

mann, 2004a)
&2(5) . B(S)TD 6(5)
: dfy

where df; is a measure for the degrees of freedom of the fit Bl(t) = BOZ + B(t)l;l. This

can be calculated, at least approximately, from the smoothing matrix. Let therefore

Miji = (ziji, 2 B(7)), where z;;; denotes the element in z;; corresponding to G(t).

The degree of freedom for the [-th component is then defined through

dfy = tr {Z Y MMy, exp(nie) + o) *diag(0, D)} {Z Y MiuM, exp(%k)}
k=1 (i,j)eRy k=1 (i,j)eRy

A stopping criteria for the iterations of the algorithm is derived later based on the

marginal likelihood I,,(.).

3.3 Variance Calculation

Variance calculation in combination with the EM algorithm is primarily focused on
variance derivation for the fixed parameters (see Louis, 1982). Here, however, we are
interested in the variance of the smooth fit Bl(t), [ =0,...,q. We can interpret the
estimate Bl(t) = BOZ +B (t)I;l as predictor, based on the predicted values for b;. This
suggests to focus on E({G(t)—G(t)}?) as prediction error, where 3;(t) = fo+B(t)b

with b; as true but unknown random effect. The expectation in this case is carried

12



out with respect to both, ¥ and b. To proceed, we set 6 = (87,bT) and treat for

simplicity variance components o7 and ¥, as known. We show in the Appendix that

~ ~

E{(0—0)*} ~ T,(01) " (11)

with I, (0) as penalized Fisher matrix defined through

91,(6)
20007

Lpp(0) = —Eyyp { } + diag(0,0;°D).

See also Ruppert, Wand & Carroll (2003) for a similar derivation in the case of
normal response.

The next step is to calculate the penalized Fisher matrix based on the Monte Carlo
EM for a. Using the same arguments as in Louis (1982) and additionally taking the

penalization into account we get the observed Fisher matrix

. 0211,(0, CL)
—LO) =E { 80007

where s,(0) = 0l.(6,a)/00. The components in (12) can now be estimated from the

Vo) - B {0)s(0)"Iv.0} (12)

final Monte Carlo simulations of the EM algorithm. In particular, for estimation of
the second part of (12) an unpenalized (and hence asymptotically unbiased) estimate
for 6 is required. This is readily available by fitting a Poisson model with design
matrix corresponding to coefficients 3 and b and then taking empirical expectation

with respect to simulated values a*.

4 Monte Carlo Error and Model Selection

4.1 Computing the marginal likelihood

A simple procedure to compute the marginal likelihood is to take advantage of the

Monte Carlo simulations in each EM step. To do so we make use of the reciprocal

13



importance sampling estimator as introduced by Gelfand & Day (1994). We gener-
alize their idea here by extending it to the hybrid estimation structure from above.

With a*l, e ,a*M as Monte Carlo sample we calculate

1 M o
= MmZ:l exp {V(a™"|b)} (13)
with V' (a*|b) = log{h(a*|b)} — I.(5,b,a*) — log{¢(a*,diag(2,))}. In the line of
Gelfand & Day (1994) and reflecting that a*" are drawn from f(a|b,Y’) we find A(b)

as estimate for

a|b
f(yla,b) ¢

(For numerical reasons it is advisable to add a constant to V' (a*|b) which is then,

f(alb,Y) da = f(;w) — oxp {—(5,b)} .

after taking logarithm, subtracted from log(A). For simplicity of notation we omit

this numerical trick here.) The marginal likelihood is now equal to

(1) = 10g [ exp {~10g(A(b))} (b, diag(e?D))db. (14)

Note that b maximizes the integrand of (14) and Laplace approximation leads to
9*g(b)
obobT
where g(b) = log{A(b)} — log {¢(b,diag(c?D~))}. Plugging in estimate (13) pro-

In(B) ~ —log {A(b)} + log { ¢(b, diag(e7 D))} — ;log

(15)

vides an estimate for I,,,(3) denoted by [, (3). Since I,(3,b) = —log {A(b)} the latter
component in (15) mirrors the determinant of the Fisher information which is easily

estimated from the Monte Carlo sample. In particular we have
DA(b) OA(D)  O2A(D)

2

9b) _ b 0T L GbOVT | ging(s-2D)

Q

obobT Ab)? A(b)

where the separate components can be estimated by

0AD) 1 X o OL(B,b,a™)

o a2 eV )

PAb) 1 M o Ol(B,b,a*™) dl(3,b,a*™)  9%(3,b,a*")
oborT M mzz:l exp(V(a™, b)) b ot obobT

14



The estimated marginal likelihood can now be used to supervise the convergence of

the EM algorithm and for model selection.

4.2 Supervising the convergence of the EM algorithm

The EM algorithm is known to increase the likelihood in each iteration step (Demp-
ster, Laird & Rubin, 1977) and to converge (Wu, 1983; Vaida, 2005). This property
is however not guaranteed for the Monte Carlo version, due to Monte Carlo variabil-
ity, since the marginal likelihood depends on the random sample a*l, ...,a* . For
supervision of the EM convergence it is necessary to assess the variability resulting
from the Monte Carlo sample. As in Booth & Hobert (1999) we suggest to start
with a small Monte Carlo sample size in the first steps and to increase it successively.
Our proposal is thereby to increase the Monte Carlo sample size M, in the s-th step
by a factor (1 + «) with a > 0 if the marginal likelihood estimate does not increase.
We therefore calculate I, (3) and make use of the following model. Denoting with
L,n(3%) the marginal likelihood without Monte Carlo error, that is for Monte Carlo
size My — oo we can consider Zm(ﬁ(s)) as noisy version of lm(ﬁ(s)) with noise vari-
ance of order O(M;'). Assuming that I,,(6)) is a smooth function in s we have
L,.(39) as noisy observations for I,,(3®). This suggests to plot I,,(5)) against
iteration step s and to use a simple scatterplot smoother and standard software to
get the marginal likelihood lm(ﬁ(s)) from the noisy Monte Carlo estimates Zm(ﬁ(s)).
To do so, a weighted smoothing has to be carried out with weights given by M,. If

function I,,(3*)) flattens out, this indicates that the EM algorithm has converged.

4.3 The Marginal Akaike Criterion

For model selection between classes of models (1) we use the Akaike information

criterion (AIC) based on the marginal likelihood. The AIC is justified from a model

15



prediction perspective, it is designed to choose the model with the lowest predic-
tive log-likelihood (Akaike, 1973, Burnham & Anderson, 2002), and is related to
cross-validation and Mallows’ C,, (Hastie & Tibshirani, 1990, p.160). For complex
smoothing models, model selection is still in its infancy (Ruppert, Wand & Carroll,
2003, pp.184, 220). In the context of smoothing, AIC has been used mostly for
selecting the smoothing parameter (Hurvitch, Simonoff & Tsai, 1998, Simonoff &
Tsai, 1999, Ruppert, Wand & Carroll, 2003), and occasionally for choosing between
different models (Hastie & Tibshirani, 1990). For mixed models some new results
for the AIC are given in Vaida & Blanchard (2005). An alternative approach to the
classical AIC is to compute the AIC from the marginal likelihood (5); we will call this
the marginal AIC (mAIC). This approach is consistent with the P-spline idea of us-
ing the marginal likelihood for estimation of all parameters, including the smoothing
parameters. There is no additional difficulty in using mAIC when random effects a
are present. Wager, Vaida and Kauermann (2004, unpublished manuscript) showed
that in most situations mAIC performs as well for model selection, or better, than

the classical AIC, for continuous response. More specifically, mAIC is given by
mAIC = =21,,(3,62,%%) + 2r (16)

where r is the number of parameters to be estimated in the model. For each smooth
component there are two parameters, 3y and the related variance o7, while if the

effect is time constant, that is §;(t) = By, the component has one parameter only.

5 Application

5.1 Simulation

To explore the performance of the estimation procedure we run a small simulation

study. We simulate data from 100 clusters. The cluster size takes values 1, 2, 4, 6

16



and 8 and we simulate 20 independent clusters for each size. Data are generated on
a discrete grid with survival times taking possible values t = 0,1,...,60. For each
time interval ¢ to ¢t + 1 we simulate censoring with probability 0.97. At time point

t we simulate data using the model
Mt hi(t) = exp{Bo(t) + z1;51(t) + a;} (17)

where cluster effect a; is drawn from a normal distribution with standard devia-
tion o, = 0.5, and covariates x;; drawn as binary random variates with P(zy; =
1) = 0.3. For the functional forms of the effects we use (y(t) = —4 + 1.5¢/60 and
B1(t) = sin(1.5¢/607). We fit the model using a 15-dimensional basis B(t) built from
truncated lines for each of the effects. Based on 100 simulations Figure 1 shows for
time point ¢ the median (dashed line), upper and lower 25 % (dotted lines) and 10 %
quantiles (solid line), respectively. There is a slight bias in the peak of 3;(¢), which
is however moderate. In Figure 2 we show the fitted random effects for clusters with
cluster size 1 and 8, respectively, plotted against their true simulated value. These
are obtained from the mean of a* of the Monte Carlo sample in the last iteration
step. There is an effect of shrinkage visible, which is reduced if there are more
data available in a cluster. The shrinkage is inevitable and has no dominance on
the estimation of o,, which is estimated with simulation mean 0.53 and simulation

standard deviation 0.05.

The next step is to explore the marginal Akaike information criterion. We therefore
fit the proportional hazard model My : h;;(t) = exp{Bo(t)+x1;51+a;} as competitor.
Figure 3 (left boxplot) shows the corresponding difference mAIC( M) —mAIC(M;)
with mAIC(M) as defined in (16) for the corresponding model. Clearly, model M

is preferred in most simulations. In the next step we swap the role of My and My,
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that is we simulate data from model M, and fit again models M, and M;. For (3;(t)
we set G1(t) = 1. The corresponding simulated values of mAIC(M;,) — mAIC(M,)
are shown in the right hand side boxplot of Figure 3. The preference for model M,

is now visible.

5.2 Unemployment data

We apply our model to unemployment data from the German Socio-Economic Panel.
We analyzed a subsample of n = 400 West German individuals who had been reg-
istered unemployed at least for one month during 1990 and 2000. (The data set
is available for scientific users from the German Institute for Economic Research,
see www.diw.de.) About 44% of the individuals experienced more than one spell of
unemployment, with a maximum of 12 spells for one individual. Table 1 gives the
distribution of the number of spells in our sample. The duration of unemployment
is defined as censored observation, with an event only if the individual returns to
full-time employment. Any other termination like further professional development,
(early) retirement, short term or part time contracts are taken as censored observa-

tions.

Figure 4 shows the Kaplan-Meier curves for the effects of covariates nationality (1 if
German, 0 otherwise), gender (sex = 1 for male, 0 otherwise), and age. The age is
categorized with two indicator variables. With under25 we classify individuals which
are aged 25 or younger at the beginning of their unemployment (1 if age < 25, 0
otherwise). Unemployed individuals aged 50 or older are indicated with covariate
over50 (1 if age > 50). In Table 2 we list the distribution of the covariates, with

their corresponding values for the whole panel for comparison.
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We fitted the following models to the data:

My =h(t) = exp{Bo(t) + natf,(t) + sexfs(t) + under255,(t) + overb00,(t) + a;}
My =h(t) = exp{B(t) + natf, + sexls + under25, + over505,(t) + a;}

Mz =h(t) = exp{Bo+ natf, + sexfs + under25p, + over5008,(t) + a;}

My =h(t) = exp{Bo(t) + natB, + sexfs + under253, + overs03, + a;}

Ms =h(t) = exp{Bo(t) + natf,(t) + sexf,(t) + under255,(t) + overs05,(t)}

In model M, all effects vary with time. In models My and Mj3 only baseline
and the effect for over50, respectively, vary with time. Finally we exchange the
roles of (,(t) and [y(t) by fitting model My. Note that model M, is a classical
proportional hazard model with constant effects but smooth baseline. In the first
three models we leave the individual random effect to incorporate frailty effects
and to take the clustering of observations into account. Finally, model Mj lets
all effect to vary with time but sets the random individual effect to zero. That
is, spells are considered as independent events. In Figure 6 we show the marginal
likelihood mAIC(M,t) = —20,,(3®) 4 2rp for the different models and steps
for the EM algorithm. The Monte Carlo sample size M, starts at value 40 and
is increased by 25 % if the likelihood steps I, (3*)) decrease. For each model we
show on the AIC level the estimated marginal likelihood Zm(ﬁ(s)) including a smooth
scatterplot fit of function im(ﬁ(s)) calculated by a simple spline smoother (with 5
degrees of freedom and observations weighted by M;). For model M; we were faced
numerical problems since variance estimates o} for all covariates except of over50
converged to zero. The large mAIC for model Mj clearly showed it inadequate.

Based on Figure 6 we selected model M3. The corresponding estimates are listed in
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Table 3. It appears that the baseline is constant (for individuals of age < 50), so that
chances of returning to professional life are constant over time, but depend on an
unobserved individual heterogeneity. German individuals and males have increased
chances to terminate unemployment. Individuals aged 25 or younger are less likely to
return to full employment, even though the effect is found not significant. Finally,
unemployed aged 50 and older are less likely to return to professional life, with
an effect strengthening over time. Figure 5 (right panel) shows the fitted random
effects against the mean duration of unemployment for each individual. As expected,
individuals with shorter unemployment duration had estimated random effects a;

generally larger than those for individuals with longer duration time.

6 Conclusions

In this paper we extended the classical proportional hazard model simultaneously
in two directions, to allow for non proportional hazards and to include frailty or
random effects. Even though these two are conceptually different, we demonstrated
that a Generalized Linear Mixed Model provides a unifying framework, and it al-
lows for fitting both smooth and random effects. To make the estimation feasible, we
proposed a hybrid EM algorithm by combining Laplace approximation and Monte
Carlo sampling. The marginal likelihood was used for supervision of the EM con-
vergence, and also for model selection, via the marginal AIC. Such a model expands
the scope of statistical modelling, in response to the increasing availability of larger

and more complex studies and datasets.
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A Technical Detalils

Derivation of Prediction Error

First we assume that b is a fixed but unknown component, that is, we condition on
b. In this case § = (37, b7) is treated as parameter and like in standard likelihood
theory Eyp, = {01,(3,0)/00|b} = 0 with [,(.) given in (8). A penalized estimate for b
and 0, respectively, is defined through 0 = albp(é /00) with [, as penalized marginal-
ized likelihood Iy,(0) = 1,(0) — log ¢{b, diag(c?D~)}. Apparently, the penalization

induces a conventional smoothing bias which results to

bias(7) = Eviy {W} - (—diag(()al‘2D)b> ‘ (18)

Note that expectation is taken over a and Y but we condition on 0. Expanding the
likelihood about 6 now provides with classical likelihood arguments by conditioning

on b:

f— 0= {Ibp(elb)1 [albéﬁe’ 4 bias <05>1 } {140,

where Ip,(0) = I,(0) + diag(0,0; 2D) is the penalized Fisher matrix with I, =
—Eypp {82lb(0)/898«9T}. Our objective is to derive the prediction error £ {(é - 9)2}
by taking expectation over both Y and b. Note first, that taking expectation over b
cancels out the bias since E(b) = 0, that is F}, (bias(ag)) = 0. This allows to write

the prediction error as

~

E{(0-0)) =Ey {Vary,(0 — )} + Var, {[Ey,(6 — 0)} (19)

where the subscripts indicate the variable we take expectation about (and random
effects a are always integrated out). The conditional terms result by standard like-

lihood theory, since b is treated as parameter (estimated in a penalized manner).
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Hence, the conditional variance results to Vary,(6 — 0) = T, (8]b) ' 1,(8]b) Ty, (6]b) .
Integrating out b is now done by Laplace approximation so that the first component

in (19) results to
By { Vary, (0 — 0)} = 1, (01)1,(0]6)1,,) (6]b) (20)

where § = (6,b). In the same line we now look at the second component in (19).
Taking the variance with respect to b over the conditional bias (18) allows by using

Laplace approximation to write

~ A

Var, {Ey|b(é - 9)2} = I, (0|b)diag(0, o; 2D)T,,} (6]b) . (21)

Adding (20) and (21) and reflecting the definition of I,,(.) provides (11) as simple

formula for the prediction error.
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Number of spells 1 2 3 4 5 7 12

Proportions 61.25 21.0 7.0 55 225 025 0.25

Table 1: Proportion of number of spells for n = 400 individuals.

nation gender under 25 over 50
(Germans) (males)

sample 81.75 49.25 23.75 20.25
panel 80.65 51.02 24.25 21.13

Table 2: Proportion of individuals for sample and complete panel.

effect estimate std dev p-value

baseline - 3.55 0.22 < 0.01
nation 0.84 0.15 < 0.01
gender 0.42 0.19 0.02
under 25 - 0.31 0.17 0.07

Table 3: Parametric estimates for unemployment data.
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Figure 1: Simulated estimated effects with median (dashed line), lower and upper
25 % (dotted line) and 10 % quantile (solid line). The true curve is shown as bold
dashed line.
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Figure 2: Fitted posterior mean of random effects a; plotted against their true value
for two different cluster sizes. The correlation is given in each plot.
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Figure 3: Simulated marginal Akaike criterion if simulations are drawn from model
1 (left boxplot) or model 0 (right boxplot).
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Figure 4: Kaplan-Meier estimates for unemployment data for different covariates.
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Figure 5: Fitted effect for over50 (left plot) and fitted random effects (right plot),
plotted against the mean survival time for each individual.
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Figure 6: Convergence of EM algorithm shown as AIC value for 4 different models.

For model M, to My the fitted marginal likelihood values [ (B(S)) are smoothed as
suggested in 4.3 with resulting confidence bands.
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