zum Hauptinhalt wechseln zum Hauptmenü wechseln zum Fußbereich wechseln Universität Bielefeld Play Search

Contact

Prof. Dr. Anna Zaharieva

© Universität Bielefeld
Zum Hauptinhalt der Sektion wechseln

Latest news

Anna Zaharieva and Mariya Afonina present their research at the European Economic Association in Rotterdam, 26-30 August 2024.


Anna Zaharieva and Katrin Rickmeier present their research at the "Verein für Socialpolitik" in Berlin, 15-18 September 2024.


Welcome to the new research employee Nico Ullrich, who will be employed in the Leibniz Science Campus.


Anna Zaharieva and Mariya Afonina present their research results at the 40th annual conference of the Socio-Economic Panel in Berlin, 4-5 July 2024.


The master course by Katrin Rickmeier and Sophie Schmiegel on Sampling Theory is ranked second best according to the teaching evaluations in the summer semester 2024.


Lehrstuhl für Arbeitsmarktökonomik

Lehrstuhladresse:

Universität Bielefeld
Fakultät für Wirtschaftswissenschaften
Lehrstuhl für Arbeitsmarktökonomik
Postfach 10 01 31
33501 Bielefeld, Deutschland

Lieferadresse:

Universität Bielefeld
Fakultät für Wirtschaftswissenschaften
Lehrstuhl für Arbeitsmarktökonomik
Universitätsstraße 25
D-33615 Bielefeld

Büro:

Raum W8-101
Telefon (+49) (0)521 106 5637
Briefkasten U/V3 1757

Email: anna.zaharieva@uni-bielefeld.de

Economics Seminar Talk on

Predicting human decision-making under risk and uncertainty is a longstanding challenge in economics and related fields. While classical theories excel at offering explanations, they often falter in predictive accuracy. The challenge often lies in the idiosyncratic nature of initial choice, whereas repeated decisions with feedback tend to exhibit more stable patterns, allowing for more reliable forecasts. In this talk, I present a novel integrative framework that unites theory-rich behavioral models with machine learning and AI techniques. This approach, as exemplified by the BEAST Gradient Boosting (BEAST-GB) model, not only achieves state-of-the-art predictive accuracy in forecasting human choice behavior—surpassing purely data-driven methods and other behavioral models—but also maintains robust generalization across contexts. Moreover, I will show how insights from human learning processes can enhance machine learning models, helping to anticipate repeated choices more accurately and to identify the conditions under which theoretical structure is most beneficial. Taken together, these findings highlight that combining rich behavioral theories with advanced computational tools can advance both our understanding of human decision-making and our ability to predict it, ultimately benefiting research, policy, and practical applications.  

Zum Seitenanfang