FLAME GUI User Manual

Biilent Ozel, Mehmet Genger, Vehbi Sinan Tunalioglu and Kaan Erkan
TUBITAK-UEKAE

The Turkish Academic Network and Information Centre
Kocaeli, Turkey

Contents

|List of Figures|

[1 Executive Summary|
[2__Introduction|
3 Requirements and Installation|
8.1 Installing required software| L
8.2 Installing EURACE-GUI from binary distributionf
3.3 Installing EURACE-GUI from sources|
4 Overview of Agent and Population Design Process|
[Agent Design with XMML-Editor]
[6 Compiling Agents with GXparser|
|7 Population Design with PopGUI|
[7.1 Using PopGUI| 0
7.2 STEP 1: Creating a population|
.3 2: Specifying population composition| oL
[7.4STEP 3: Specifying agent memory variables| o v v v
[7.4.1 Distinguishing simple and composite variables[.
[7.4.2 Specification syntax for variables and basic random distributions|
[(.4.3 Deterministic initialization|o oo oo
[7.4.4 Using other memory variables of agent in expressions|.
[T45 Tnitializing arrays|. o e
[7.4.6 Using model constants or population size for scalability purposes|
[7.4.7 Accessing other agents and initializing agent relations|
[7.4.8 A note about managing dependencies|
7.4.9 Some useful Python constructs]
[774.10 FINISHING UP: Validating and saving memory variable specifications)
[r.5 STEP 4: Editing constants|
[7.6 STEP 5: Instantiating population and finishingup|
7.7 Command line options, utilities, and debugging|
7.8 NOTES] e e
8 Running Simulations through ExpGUI|
|9 Analysis of results using VisGGUI|

9.1 Overview
9.2 Features

ii

iv

S O ot G

10

12

13
14
15
16
16
19
19
20
20
21
21
22
24
24
25
25
25
26
26

28

CONTENTS iii

9.3.2 External Packages| o 34
9.3.3 Standalone Installationl o o o 35
9.4 UINIMATY| « « « « o v v v e e e e e e e e e e e e e e e e e 35
M I3 ation T] A-1
IA.1 Installing PopGUI e A-1
A.1.1 Installation on GNU/Linux| i A-1
A 12 Tnstallation on Windowslo oL A-1

List of Figures

2

8

11

12

15

2 diting population compositio 17
[7.3 Editing memory variables| 18
28

31

32

33

34

9.5 Visualization of Advanced Time Series Plots of an Experiment| 35
9.6 Exporting Raw Data of Plots| o o000 36
[9.7 File Operations| 37
9.8 onfiguring Workspace|.o 38

v

Chapter 1

Executive Summary

Creation of software utilities for use in design of agents, design of agent populations, preparation of
simulations, and visualization of simulation results has been an essential objective of EURACE project
in order to present a complete platform to facilitate use of agent based simulations in policy design. The
EURACE Graphical User Interface (GUI) presented here refers to a collection of compatible software tools
which provide the components that correspond to these functions of the EURACE software platform.

Design of the EURACE GUI reflects our intention that these software tools reflect most general
definition of the particular problems they intend to solve in agent based approach, to the extend that
it is possible, while at the same time they are complete in the sense that they can be deployed in the
EURACE project. In particular that they work with the FLAME simulation framework [?].

Following are the components of EURACE GUI that correspond to different aspects of simulation

development work:

XMML Editor Agent design requires a tedious process of describing agent memory and behavior in
an XML format specific to FLAME (the so called XMML format) while controlling for consistency
of design in terms of parameters that affect the overall model. The XMML Editor provides a
graphical interface which allows the agent designer to focus in his/her job, in addition to providing
facilities for detecting errors in the design. It was named after the fact that it translates the design

into the XMML format which is usable in FLAME framework.

GXparser Once a model composed of several agent types is designed, it has to be compiled by the so
called XParser component of the FLAME. The GXparser provides a graphical tool to ease this

manual process and report possible compilation errors back to the designer.

PopGUI A population corresponding to the European Economy in EURACE simulations is composed
of multiple (thousands) copies of several types of agents in several geographical regions, whose
memory and relations with each other are characterized by statistical features derived from actual
data. The PopGUI component enables simulation designers to describe composition of populations

and statistical features of agents, and produce population instances that are used as initial states

Chapter 1. Executive Summary 2

for simulations.

ExpGUI Policy experiments require comparison of outcomes of alternative simulations, where the com-
pared cases correspond to covariation of several parameters among their corresponding ranges.
ExpGUI facilitates creation of a series of simulation tasks from description of the experiment, thus

reducing errors in creation of policy experiments.
VisGUI The VisGUI component provides a tool for visualization and analysis of simulation outcomes.

ConGUI Since simulation development requires several iterations over the various tasks described above,
the ConGUI component was added to the EURACE GUI to ease launching of the various compo-

nents described above.

rrrrr

Simulation Contraller

1-NXML

Figure 1.1: EURACE GUI

Figure[I.1]is the flow diagram and the graphical user interface of the toolkits developed for EURACE.
The deliverable presented here first describes the architecture of EURACE GUI in relation to other com-
ponents of the EURACE Software Platform, then proceeds to instructions for using various components

of the GUI as part of simulation development work.

Chapter 2

Introduction

This document serves as the definitive documentation for the suite of user level programs that are created
as part of the EURACE project effort. The EURACE project aims to produce socio-economic models
and multi-agent simulation software for use in economic policy experiments. The project has started in
September 2006, and will conclude in September 2009. Information on EURACE project can be found
at http://www.eurace.org,.

An important requirement for EURACE project was creation of a software platform for design
and implementation of agents, creation of agent populations, creation and execution of experiment
sets, and evaluation and visualization of simulation results. While an existing multi-agent framework
(FLAME/Xagents framework) was adopted in EURACE project and improved as part of the project
effort [? |, such tools for pipeline of agent, population, and experiment design not existed at the time
and created as part of the EURACE project.

The set of user interface tools in EURACE software platform, collectively called here as EURACE-
GUI, were distributed individually during early stages of project. This documentation provides a sin-
gle entry introduction to capabilities and usage of EURACE-GUI. Up-to-date information about the
EURACE-GUI can be accessed online at http://eurace.cs.bilgi.edu.tr.

EURACE-GUI consists of several independent modules that were created at different stages of the
project. Various different technologies were employed for each module in order to satisfy implementation
and agile development needs. For this reason modules are written using different computer languages
(C++, Python), and uses various software and libraries (GTK, Qt, R-project). Despite their indepen-
dence, the modules in EURACE-GUI can be invoked easily from within an entry point program called
Control GUT (ConGUI).

These independent modules all correspond to stages of the process of designing, running, and evalu-
ation multi-agent simulations of complex systems. Following is a brief description of each module in the

EURACE-GUI:

ConGUI : ConGUI is a front-end which facilitates invocation of different modules of EURACE-GUI

http://www.eurace.org
http://eurace.cs.bilgi.edu.tr

Chapter 2. Introduction 4

easily as part of a design pipeline.

XMML-Editor : Used for designing different types of agents, their memory variables and behavior, in

addition to global constants and messages used in a multi-agent system.

GXparser : Used as a front-end for validating agent models produced with XMML-Editor, by parsing
them through FLAME’s xparser.

PopGUI : Used for creating populations of agents whose state variables and relations can be initialized

according to given criteria.

ExpGUI : Used for creating sets of experiments using agent models and populations, then for executing

them on a FLAME simulation engine.
VisGUI : Used for visualization and statistical analysis of simulation outcomes.

The reader is recommended to read Chapter [4 which provides an overview of the multi-agent model,
population and experiment design process, before proceeding to subsequent chapters which explain usage

of individual modules.

Chapter 3

Requirements and Installation

EURACE-GUI is written with portability in mind. Despite the variety of libraries it depends upon,
all such dependencies are available for common computing platforms including 32-bit or 64-bit variants
of GNU/Linux, Unix or BSD, and Microsoft Windows. While it is likely that it can be run on other
systems such as Mac OS, it is neither tested on those platforms not we provide installation packages for
them. Manual installation of individual modules of EURACE-GUI and libraries required by them can be
cumbersome. Nevertheless, details of doing so are described in Appendix [A] and module sources can be
downloaded from http://eurace.cs.bilgi.edu.tr.

Before installing EURACE-GUI using installation packages, you are recommended to install the

following software separately:

FLAME : FLAME multi-agent platform is developed and distributed by University of Sheffield. Please
check http://ccpforge.cse.rl.ac.uklfor FLAME installers.

R : R statistics package installers are available for a variety of platforms and is distributed under the

GPL license. R installers can be downloaded from http://www.r-project.org.

Although you can install and run EURACE-GUI without having the above software, you should be aware
that created simulations cannot be run without FLAME platform, and most features of the VisGUI
component will not be available without R. However, if your intention is merely using a computer as a
multi-agent design workstation, it is perfectly possible to install and run EURACE-GUI without these

two software packages.

3.1 Installing required software

Although EURACE-GUI can be installed and run without the following software, its use and features

are limited without them. Therefore it is recommended that the following are installed, in this order:

R : R statistics package can be downloaded and installed from http://www.R-project.org. If you are

using a Debian or Ubuntu Linux, it can also be installed using the package ‘r-base’.

http://eurace.cs.bilgi.edu.tr
http://ccpforge.cse.rl.ac.uk
http://www.r-project.org
http://www.R-project.org

Chapter 3. Requirements and Installation 6

FLAME : First get the sources from http://ccpforge.cse.rl.ac.ukl After unzipping the sources,
you need to compile and install two components from FLAME tree: libmboard and xparser. Enter

to these directories in the given order, run ‘make’ then ‘make install’.

3.2 Installing EURACE-GUI from binary distribution

To get a copy of EURACE-GUI installer, go to http://eurace.cs.bilgi.edu.tr| and download the
most recent binary package for your platform (supported platforms are Windows, Linux and other Unix

variants). Execute this file to complete the installation.

3.3 Installing EURACE-GUI from sources

If you are working on Microsoft Windows, MinGW is required to compile and install the EURACE GUI
from sourse distribution. It can be downloaded from http://www.mingw.org. On Ubuntu or Debian
Linux platforms you will need to have the package named build-essentals installed. Once you have this

built environment for your platform, follow the instructions in Appendix [A]

http://ccpforge.cse.rl.ac.uk
http://eurace.cs.bilgi.edu.tr
http://www.mingw.org

Chapter 4
Overview of Agent and Population

Design Process

Certain stages of multi-agent simulation design envisioned in EURACE depend on output of other stages.
Figure visualizes the flow of work through modules in EURACE-GUI, also indicating the type of data
that comes out from modules and used as input to others. This visualization is exactly what you will
see when you launch the ConGUI, which acts as the control panel for invocation of different modules in
EURACE-GUI

The first stage in EURACE multi-agent simulation design is creation of agents and shared environment
using XMML-Editor. Agent design involves (1) designing agent memory for different types of agents,
(2) describing agent behavior, in the case of EURACE/FLAME the language used for such description
is C programming language using a few FLAME specific constructs, (3) designing global environment
variables shared by agents, (4) designing data types that occur in memory variables and exchanged as
data units between communicating agents. Use of XMML-Editor to carry out these tasks is described
in Chapter [5} Once the multi-agent model design is completed, the model is saved in a FLAME specific
format called XMML.

The next stage is designing a population of agents which will be the initial state of simulation. The
model created in XMML-Editor is used as an input to PopGUI, which enables one to specify how different
geographical regions in the simulated system are composed of different number of each type of agents,
how each agent’s memory should be initialized, and what should be the values of environment constants
shared by all agents. PopGUI provides a variety of expressions which can be used to specify random
distributions for initializing agent memory, or to establish relations between agents (e.g. employment
relations in an economic simulation). Using these specifications PopGUI can create population instances
which are different but has the same stochastic properties.

The model and a population instance is sufficient to run a simulation. The model contains what are

the memory variables of agents and program code describing their behavior. The population instance

Chapter 4. Overview of Agent and Population Design Process

Figure 4.1: Flow of multi-agent design in EURACE

XMML Editor
XML
XML
PopGUI
GXparser
-Pop
0. ¥ral
HRREE ExpGUI
.%ol
Simulation Engine
1-M.3al

VisGUI

Chapter 4. Overview of Agent and Population Design Process 9

on the other hand contains initial values of agent memory for a whole set of agents comprising the
population. Before a simulation is run however, the model must be compiled to generate an executable.
The GXparser module allows user to do this without going down the elaborate steps of xparser program
in FLAME.

Economic simulations are useful when one can compare outcomes of different environments, popula-
tions, or behavior. The ExpGUI program provides facilities to create a set of different initial conditions
(populations) and to run simulations easily.

Finally the VisGUI program can be used to visualize and analyze the results of simulations. The

program use plotting and statistical facilities of R statistics package [?].

Chapter 5

Agent Design with XMMUL-Editor

XMME (X-Machines Modelling Editor) provides the functionality of designing and implementing agent
specification and behavior. It is a GUI application and the XMML (X-Machines Markup Language)
provides the underlying modeling schema.

In particular, XMME helps its user to visually edit an XMML formatted file. XMML is a highly
verbose and partially untyped data specification language based on XML format. This sort of nature
makes it relatively difficult to edit individual XML files to describe agents’ specification and behavior
which are very sophisticated in so far that the agents have internal variable and external message depen-
dencies. Furthermore, the nested model fascility of XMML specification makes it virtually unmanageable
if it comes to large models.

The XMME wraps the XMML specification and functionality by means of nested data models. In
its runtime, all the decoupled XMML files and XMML nodes are managed by the application so that
the model specification remains consistent over time. By doing this, XMME does not limit the XMML
capabilities which allow to represent sophisticated agent models, on the contrary, it helps modeler to deal

with the technical details and internal model specification consistency.

XMME is a free and open source software application which is developed using C++ and Trolltech/QT
development framework. The development idea is based on content-presentation seperation, ie. the model
internals are controlled by a seperate routine which is a software library called 1ibxmm2. 1ibxmm?2 provides
the model whereas XMME presents it to the user. At the same time, it passes all the user input to the
libxmm2. libxmm2 is written purely in C4++ and core QT library which means that it can be used by
any other software routine, such as web server applications, command line programs etc. During the
EURACE software toolkit development phase, developers have made extensive use of this library with
fast-prototyping principles. Beyond 1ibxmm2, XMME uses QT’s model-view classes, which makes it easy
to align to XMML while new functionalities added to XMML specification.

Both XMME and and 1ibxmm2 are cross-platform applications. So far, it has been ported to Microsoft
Windows, GNU/Linux and MacOSX operating systems.

10

Chapter 5. Agent Design with XMML-Editor

AgentGUI

. B8a4#d

X Machines Model Hierarchy

Data |

v i Eurace
v Nested Models
P @ Consumption_Goods_Market
P g Credit_Market
+ @ Financial Management Dummy
» @ Financial Market Dummy-UNIBI
P @ Investment_Goods_Market
P @ Labour_Market
> i@ Government
B @ Statistical_Office
v Agents
» & Frm
» & Household
> & Mall
» & IGFrm
» & Eurostat
» & Bank
» 8 Government
» S Central_Bank
v Messages
= [bank_account_update
= [central_bank_account_update
= Environment

Edit Properties | XMML Information

Model Name

LEu race

Model Version

{ pre-Oxford

Model Description

Authors: Simon Coakley, Mariam Kiran, Simon Gemkow,
Philipp Harting, Sander van der Hoog, Mario Locci, Sabrina
Ecca, Marco Raberto, Andrea Teglio, Saul Desiderio.

File Path

Figure 5.1: XMME (AgentGUI) Screenshot

11

XMME GUI design is based on two panes. Left pane provides a hierarchical tree-view widget where

all the XMML nodes are represented. The right hand pane allows the user to edit available nodes in

detail.
A screenshot is provided below on Table [5.1]

Chapter 6

Compiling Agents with GXparser

Once a model composed of several agent types and markets is designed, it has to be compiled by the so
called XParser component of the FLAME. The GXparser module of EURACE Toolkit is essentially a
graphical user interface wrapper of XParser. It eases the manual process of economic design and report

possible compilation errors back to the designer. See Figure [6.1]

GXParser ==
File Help
Model Fie Path: C:/FP6/EURACE/Disseminaton FET09/Demo/Eurace_Model_Demo/eurace_model.xml =)
XParser Output Messages Directory Layeut (Compilation Output)
ERRORS | Neme Size Type Date Modiified =
Bank_sgent_headerh 5KB h File 25.10.2000 16:40:54
Noiie L Central_Bank_agent_headerh 3KB h File 25.10.2000 16:40:54
Cons_Goods_UNIEI File Folder 20042008 05:20:00
>) Credit_Ancona File Folder 20042009 05:20:00
OUTPUT W Doxyfile 9IKB File 25.10.2000 16:40:53
i Eurostat_agent_headerh 20KB h File 25.10.2009 16:40:54
ﬁgi;‘“’iiz” Z::;:Emdsl o Financial_ Management_ GREQAM_dummy File Folder 20.04.2009 05:20:00
EREien e Financial_UNIBI File Folder 20.04.2009 05:20:00
inputfile: surace model.mml Firm_sgent headerh 23KB h File 25.10.2000 16:40:54
directory: - . Government GREQAM File Folder
emplaces: C:\Frogram Files\TLAME\sparsest Government_sgent_headeth 1LKB h File 25.10.2000 16:40:54
::::i:; Z";tmex::-mf::;:ﬂ Household_agent_headerh 9KB b File 25.10.2009 16:40:54
e itiast £ b s Comus o s o o S I6Fim_agent_headerh 3KB h File 2510200916405 |
Input model file: Credit Ancons/model.xml snabled - . Inv_Goods_UNIBI File Folder 20042009 05:20:00
Input model £ile: F 1 _cmpaM_ 1 sml ensbled Labour UNIBI File Folder 20042008 05:20:00
Input medel fils: FINANCIAL UG/model.xml dissbled e IKB File Do et

Input model file: Financial UNIBI/model xml enabled

i e e e e Mall_sgent_headerh 1KB h File 25.10.2000 16:40:54
et el Erial Tancas UNTRT/madal sut cxanisa » | Statistical_Office_UNIBI File Folder 20042009 05:20:00
Input model file: Covernment_GREQAM/model.xml ensbled | eurace_modelxml 15KB xmi File 20.04.2008 05:20:00
Input model file: Statistical Office UNISI/model.uml enabled headerh HEKE hFile 25.10.2009 16:40:52

my libracy functions:c > |, its larger_population File Folder 20.04.2009 05:20:14
oz abeazy funcbions: o 19 arfuschzonqufile . | its_smaller_population File Folder 20.04.2009 05:20:26
Rezding zagent named : Firm
Fmip o i R o N low_primes.n TLKB h File 25.10.2000 16:40:52
Reading xagent named - Mall main.c G40KE c File 25.10.2009 16:40:52
Reading xagent nemed : IGFimm memory.c GTLKB c File 25.10.2000 16:40:52
RaNAIng) TAdENt DN} HENTORCAL] messageboards.c 213KB cFile 25.10.2009 16:40:53
:z:i:: i:‘;z:: G ik my_library_functions.c 900 bytes c File 200420090520:00
et Eant At Eaie o | my_library_headerh 234 bytes hFile 20042009 05:20:00
Reading message named: bank_acseunt_update partitioning.c 9KB cFile 25.10.200916:40:53
Resding message named: central bank sccount update %] process_order_graph.det 13LKB dot File 25.10.2009 16:40:51
End of xagent model. - rules.c 256 KB c File 25.10.2008 16:40:54
papdlad sl tona _fooda tMiBLiandes_sal 5 =t stategraph-dummypdf 54KE pd File 2004200052000 ~

Figure 6.1: GUI for XParser

12

Chapter 7

Population Design with PopGUI

PopGUTI is written for creating agent populations for EURACE Project simulations using FLAME multi-
agent framework. The program reads already designed agent models described in FLAME XMML format,
and provides facilities to specify composition of population and specifications for initializing each agent’s
memory variables. Populations created by the program is then exported as an XML file (so called 0.xml
file in FLAME), which can be fed into a simulation engine which uses these initial conditions and agent
behavior described in models to carry out the simulations.

When reading through this guide it is important to distinguish the terms ‘population’ and ‘popu-
lation instance’. PopGUT’s central concern is to maintain specifications for creating initial populations.
‘Population’ refers to these specifications and the program stores them in its own format in *.pop’ files.
Many ‘population instance’s(0.xml files) can be created from the same population specification. Although
PopGUI is designed to create valid population instances, the program does not read them back or allow
their manipulation.

Population specification involves two main phases. First is population composition. In the FLAME
framework an agent population can be divided into any number of sub-populations. For example, the
EURACE model contains geographical regions, such as countries, and one can distribute the agents
among these regions using the PopGUIL. One most straightforward example is countries of the world.
Although each country’s social life is composed of same types of agents such as workers/consumers,
firms, banks, etc., their compositions and demographic features are different since each country have
a different population (number of people), number and average size of firms, etc. To account for such
realistic populations, PopGUI allows its user to create several regions and specify numbers of each type
of agent separately for each region; therefore allowing each region to have a different composition.

The second phase of specifying a population involves assigning values to agents’ memory variables.
Each type of agent is described by a different set of variables. For example employees can be described
with their skill set, income and employment status, whereas a firm is described by number of workers,
production capacity, etc. For a realistic population one usually needs standard or empirical random

distributions. For instance in our economic world example, sizes of firms in a country usually shows a

13

Chapter 7. Population Design with PopGUI 14

normal distribution, although its mean is different for each country/region. PopGUI provides a rich set
of expressions to specify memory variables.

Another feature of a realistic population is that the agents in it are not isolated but relate to one
another. For example workers are employed by firms in their region, or firms borrow money from banks
in their country. Therefore these relations must also be initialized in order to create a population, and
they must be stored in agent memory variables. In the case of employment relation example, firms will
have employees whose skillset is suitable for what firm produces, and furthermore the relation is exclusive
(i.e. if a person is employed in a firm, he/she cannot be employed by another). In the firm-bank relation
example firms usually borrow money from banks in their own region, and the relation is not exclusive
(i.e. other firms also borrow money from the same bank). PopGUI provides a rich set of features for
creating relations between agents, both exclusive and otherwise.

In additional to those substantial features mentioned above, some rather practical features were also
implemented to address needs of agent modelers. For example agent models change through time. New
agent types may be added, or agent memory variables are changed. It would be quite impractical to start
over with the population design when such changes occur. For this reason PopGUI allows importing
population specifications from populations that were worked out for older versions of models. With
the help of this feature populations can be re-used with only incremental changes. Such features are

introduced in the relevant sections below.

7.1 Using PopGUI

In order to create populations with PopGUI, you need a model describing your agents (their memory
and behavior). Since PopGUI was written as a part of EURACE project, it currently can use only
models given in XMML format, which is the format of the FLAME framework, the official simulation
environment of EURACE. Similarly the population instances created by the program are exported only
in the XML format adhering to FLAME specifications.

Although agent models contain behavior in addition to memory of agents, only the agent memory is
of interest when creating populations. Agent behavior is used later by the simulation engine, along with
the population created by PopGUI.

Working out a population with PopGUI consists of several stages:

1. Create a population by choosing a model, choosing the number of regions in simulation, and

optionally importing previous work from an existing population.
2. Specify population composition by entering how many agents of each type will exist in each region.

3. Specify how agent memory variables will be initialized. This also means specification of relations
between agents since relations are expressed as an agent’s identification number appearing as a

value in some other agent’s memory.

Chapter 7. Population Design with PopGUI 15

= PopGUI v0.5.0 SE)x]

File Help

[Model SummaryH 1- Proper‘cies"z - Edit Regionsl[:i - Edit Constantsl[4 - Edit Memary Variables"s - Instantiate population (Oxml)l

PopGLI version 0.5.0 started. TopulationTproperties

Population Jhome/mgencerjtest.pop' is read successfully

Name of population|European economy

Number of regions |27

Model file Jmedia/disk/mgencer/EURACE/SWNeura

| Dl
llmport ..‘HUpdate and close"Cancel]

Figure 7.1: Population properties dialog

4. Enter values of global environment constants.
5. Create one or more instances of population.

Each of stages are described in the sections below.

7.2 STEP 1: Creating a population

First create a new population, from file menu. When creating a population you’ll be asked for the model
xml file which must be in FLAME XMML format. Then you can give a name to the population and
set the number of regions in the window that pops up, as shown in Figure [7.I] The default number
o regions is 1. You can increase this number depending on your needs. When you are finished you
must save your changes using “Update and close” button in the properties dialog. You can later view or
change these properties using the “Properties” button in the toolbar. The update operation only updates
the population in your session, and does not save the changes in the file system. To save your changes
permanently at any point, you must use “Save population” or “Save population as” menu items from
the “File” menu group. The population information is saved in a file with ‘.pop’ extension in your file
system. If you want to use a previously created population, click the “Open population” menu in the
“File” menu group, then choose a population. Alternatively the name of a ‘.pop’ file can be given as

a command line argument to PopGUI when invoking the program (see section about command line

Chapter 7. Population Design with PopGUI 16

options below).

Once you have a population loaded to PopGUI, pressing “Model summary” button will display a
rudimentary structure of the model you have chosen, for inspection purposes.

Note that there’s also an “import...” button on the properties dialog. The import feature is provided
for a practical concern in modeling work. Once a population is created, PopGUI forgets about the
original model and only remembers agents and their memory variables. However the agent models may
change while work on population continues. It would be quite impractical to start over entering population
specifications every time the model changes, and when the changes are minor (e.g. a few memory variables
are added or updated in the model). In such cases what you need to do is to create a new population using
the newest model, and then import your previous work into the new population using this “import...”
button on the properties menu. However special care must be paid since import operation will import
agent memory variable specifications for only those that exists in your latest model. Therefore if there
are newly added memory variables or agents, it is up to you to complete the specifications for such new
variables and agents.

A restriction of import operation is that number of regions in the current population must match
that of the population you are importing from. Therefore even if you plan to change number of regions,
you must do so only after importing.

NOTE: As new features are added to PoPGUI it may not stay backwards compatible. For ensuring
stability data structures used by PopGUI are given a version number. If you try to open an old population
with newer versions of the PopGUI there is a chance that it will fail with a warning about the versions.
The recommended way to handle such situations is to create a population from scratch and import

memory variables as described above.

7.3 STEP 2: Specifying population composition

Next step is to set number of each type of agent in each region. When you click “Edit Regions” button
in the toolbar, you will be presented a table whose columns are regions and whose rows are agents (see
Figure [7.2]). You can enter the number of agents in this grid and then press “update and close” button

if you want to save these changes. Your entries must be either positive integers or zero.

7.4 STEP 3: Specifying agent memory variables

This is the most elaborate step of specifying populations in PopGUI. When you press “Edit memory
variables” toolbar button, you will be presented with a detailed display of agents and their variables with
several buttons at the bottom part of screen, as shown in Figure Agents, their memory variables,

and sub-components of these memory variables are presented in the form of a tree, parts of which can

Chapter 7. Population Design with PopGUI 17

i PopGUI v0.5.0 — e EEe
File Help

Model Summary” 1- Proper‘cies"z - Edit Regions”:i - Edit Constants”4 - Edit Memary Variables"s - Instantiate population (U‘xml)l

=]
PopGUI version 0.5.0 startad ‘

! Regions | EI@

NUMBER OF AGENT
IN EACH REGIOMN:

Population Yfhome/mg

ion 8Region 10Region 11Region

Firm

Household

IGFirm

Eurostat

Gowvernment

DIl

Update and close || Cancel

Figure 7.2: Editing population composition

Chapter 7. Population Design

Agent/Variable

with PopGUI

Memory Variables

Var Type Region 1 Region 2

b Firm

~ Household
id

- region_id
neighboring_region_ids
gov_id

- bank_id

- day_of_month_te_act
payment_account

- consumptien_budget

- mean_income
week_of_month

- weekly_budget

- rationed
mall_completely_sold_out
order_guantity[2]
received _quantity[2]

day_of_week_to_act

int{SPECIAL)
int{SPECIAL)
int_array

int getSelfvar('region_id")

int getAgentGlobal(*Bank")

int 0

double 0

double random(100,1000)
double 0

int

double

int

int

ordered_guantity

received_guantities

int

18

- day_of_maenth_receive_income int

- current_productivity_employer double

current_mean_specific_skills_employer double

- total taxes double 0 0 b
[ﬁax he\p"Regicn copyHExpand AHHVaIidateHUpdate and cIose"CanceI]

Figure 7.3: Editing memory variables

be collapsed or expanded by clicking on the branches. Alternatively all branches can be expanded or
collapsed using the “Expand all” /”Collapse All” buttons at the bottom of the screen.

This display also have a grid structure since one must provide specification for memory variables
separately for each of the regions. However in most cases the specifications for different regions of the
same variable are same or very similar. For this reason a “Region copy” button is provided in this screen.
Using this feature you can copy specifications for one region to other regions, and then make incremental
changes, to speed up your work.

As described above, specifications of memory variables are elaborate and has two basis: values and
relations. Although both are addressed in the language used for memory variable initialization (or
‘initform’ as we refer to them in EURACE), different features are required and thus we will present them
in separate sections below. The ’syntax help’ button on the memory variables screen displays up-to-date
reference on the initform language for your convenience. As a note to users, the initform language is
based on dynamic interpretation capability of Python, and hence it has a Pythonic syntax. However. it
is not necessary at all for users to have any experience in Python language (although a little bit can help

if one wants to use lambda expressions for extending the initform language as will be shown below).

Chapter 7. Population Design with PopGUI 19

7.4.1 Distinguishing simple and composite variables

Next to each variable’s name in the memory variable editing screen, you will see a variable type. Following

are the varieties of these types:

e A few variables are special. Currently these are the ones named ‘id’ and ‘region_id’. Users cannot
enter anything for these variables. The ‘id’ is a unique identifier of each agent in the population
(for referencing purposes) and it will be assigned sequentially during population instantiation. This
variable must exist for FLAME simulations to work. ‘region_id’, when used, will contain an integer

which is the number of the region in which the agent is placed.

e Some variables are STATIC or CONSTANT. These appear in cases where their value is fixed in
the model or taken from a constant. The names of constants are defined in agent model, but their

values are entered in PopGUI using “Edit constants” toolbar button.
e Simple variables has a type which is one of ‘int’ or ‘double’.

e Composite variables are actually C structs. The names and structure of these come from agent
model which is used when creating a new population. When a variable is of a composite type, its

sub-fields can be expanded and will be entered in separate boxes.

e Finally, a variable can be an array of a simple of composite type. For such variables users will enter
a specification for the length of array in addition to the variable (which is used for each element of
the array). Special features are provided when one wishes to address all elements of an array, such

as when they will be selected from a set without replacement.

Most common use of STATIC or CONSTANT variables occur in array sizes, in cases when array

size is fixed in the model either hard coding or by tying to a constant.

7.4.2 Specification syntax for variables and basic random distributions

The entries for memory variables are arithmetic expression which produce a single numeric value (except
the special case of array initialization). Therefore the expressions entered into the boxes in this screen
can be as simple as a constant number, or a simple arithmetic expression: e.g. “2” or “2*x2-(3.14/4)”.
Whenever necessary, PopGUI will convert integer values to real numbers, or vice verse.

In most cases the values will not be constants. Use of random or deterministic initializations are very

common. Following functions are provided for use in such cases in initforms:
rand(int,int) : a random integer from the inclusive range.
rand(real,real) : a random real number from the range.

choice([v1l,v2,...)]: Pick a value from the list randomly.

normal(mu, sigma) : Normal distribution. mu is the mean, and sigma is the standard deviation.

Chapter 7. Population Design with PopGUI 20

discrete((probability,value), (probability,value),...) : Choose value given discrete probabilities.

Probabilities must add up to 1.0.

Also you can combine any of the above in arithmetic expressions: e.g. “2+rand(0,5)” or “rand(2,6)+choice([1,3,6]
etc. Discrete versions of random distributions are automatically chosen by PopGUI. In other words even
if you use “random(1.0,2.0)” for a variable whose type is integer, it will be automatically treated as
“random(1,2)” by PopGUI.

The expressions you enter are essentially Python expressions which must produce a single value (with
the exception of array initialization, see Section . If you have some knowledge of Python, you can
enter any valid expression combining the special functions provided by PopGUI.

While entering specifications, the “Syntax help” button on the bottom of this screen can provide you
a quick reference help, as an alternative to this user manual. Once you are finished entering specifications
you can use the “Validate” button on this screen to ensure that your expressions are correct. This
validation is mostly a syntactic one and does not guarantee that you will be able to generate a population
instance at the end. That depends on various things including setting up of relations, and its success

cannot be determined before you actually proceed to create an instance.

7.4.3 Deterministic initialization

“deterministic(min,max, lambda function)” will assign values by taking one value at a time from
inclusive range and applying function to selected value. Min and Max must be integer, and Max must
be greater than Min. e.g. “deterministic(0,10,lambda x:x*10)” will initialize the memory variable

of a sequence of agents as:

agent [0]=0
agent [1]=10

agent [10]=100
agent[11]=0

7.4.4 Using other memory variables of agent in expressions

It is possible to use value of a memory variable of agent itself in specification of another. The “getSelfVar()”
function is provided for this purpose. For example if agent has two memory variables of simple types
named ‘numberofchildren’ and ‘monthlyexpenses’, one can depend on the other by entering “getSelfVar ("numberofchild

in the box for ‘monthlyexpenses’.

Chapter 7. Population Design with PopGUI 21

However you must be careful about dependencies of variables. PopGUI will analyse which other
memory variables a variable depends on and sets their values in proper order. But if there are cyclic
dependencies which cannot be satisfied, you will face an error at some point.

In the example above “getSelfVar ()” returned simply a numeric value since the named variable was
a simple variable. However, if the memory variable referred to is an array or a composite type, rather
than a simple variable, one usually needs to further refer to its elements. For example if the returned
value is an array “getSelfVar ("somearray")[0]” will return first (zero indexed) element of it. If the
returned value is a composite variable “getSelfVar("somecomposite") ["x"]” will return its sub-field
named ‘x’, and so on.

The “getSelfVar()” cannot be used to refer to the variable itself, for example to access sibling
variables in a data structure, etc. For this purpose another function is provided: “getSibling("sibling
var name")”. When used in an array of data structure, this function will retreive the data field of
the current array element. In cases where a data structure contains other data structures or elements,
getSibling() can instead access higher levels in the data structure hierarchy using ’level’ parameter to
climb up the hierarchy. For example “getSibling("uncle X",level=1)" and “getSibling("grand
uncle Y",level=2)" will seek entities at the level of parent and grandparent in the data structure

hierarchy, respectively.

7.4.5 Initializing arrays

The only case where the result of your expression is allowed not to be a single numeric value is when
you want elements of an array specified at once. In this case your expressions must yield a list whose
length is the same with the array length. For example if you have an array of length four, you can use
something like “[1,2,3,4]” to initialize the array elements sequentially from this list. A few functions

whose return values are lists are provided for possible use in such cases:

sample([1,2,3,... ,k)] : Return a k length list of unique elements chosen from the sequence. Used for

random sampling without replacement.
permutation([x,y,z,...)]: Return the same list with elements randomly re-ordered.

sequence(start,end,increment), realsequence(start,end,increment) : generate a sequence of in-
tegers with given increment within the inclusive interval: [start, start+increment, start+2*increment,

..., END] where END<end. rsequence is the version which works for real numbers

7.4.6 Using model constants or population size for scalability purposes
You can access model constants or number of agents in the population using the following:

getConstant(constantname) : Returns the value of model constant. e.g. “getConstant("alpha")”

to retrieve the value of constant named ”alpha”. (These constant values are what you set in the

Chapter 7. Population Design with PopGUI 22

“Edit constants” tab of the program).

getAgentCountGlobal(agentname) : Get global count of agents with given name, i.e. sum of number

of agents in all regions. e.g. “getAgentCount ("Firm")”
getNumRegions() : Returns the number of regions in the population.
getAgentCountRegional(agentname) : Get regional count of agents with given name.

getAgentIDListRegional(agentname, agentname, ...) : Get a list of agent IDs. You may specify
name of one or more agents. Please note that agent names are case sensitive. i.e. if you named an
agent as “Firm” you must specify the exact name. The function is deterministic, ie. when called

several times the list of agent IDs will be in the same order.

getAgentIDListGlobal(agentname, agentname, ...) : Get a list of agent IDs. You may specify
name of one or more agents. Please note that agent names are case sensitive. i.e. if you named an
agent as “Firm” you must specify the exact name. The function is deterministic, ie. when called

several times the list of agent IDs will be in the same order.

Since the last two functions return a list, rather than a value, they are usually intended for array initial-

ization.

7.4.7 Accessing other agents and initializing agent relations

Agents are not isolated. For example employees and firms in an economics simulation are related to one
another through employment relations. To address this aspect of populations PopGUI provides a means
to select other agents in the population using some criteria, and use their memory variables in specifying
another agent’s memory.

In order to pick an agent one can use:
get AgentRegional(agentname, conditions=[(” varname”,condition), (..), ...)]
getAgentGlobal(agentname, conditions=[...)]

The first one selects an agent from the same region with the referring agent, and the second selects one

from the whole population. The selectios are random. Both functions can be provided with zero or more

conditions on the agent to be selected using the following format:

“getAgentRegional ("Bank", conditions = [("givescredit",equals(1)), ("badreputation",equals(0),
1 D) 7

Please note that conditions is a list of tuples (variable name, condition function). Variable name

must be a variable of the selected agent, and condition is one of the special functions defined. These

functions can be one of the following:

equals(what) : checks whether the value of selected variable equals to the value

Chapter 7. Population Design with PopGUI 23

between(a,b) : checks whether the value of selected variable within the range
contains(x) is the value of selected variable (which must be a list) contains the value

MooreNeighbour(numcolumns,no) : checks whether the variable (an integer) is in the Moore neigh-
bourhood of "no” in a geography where regions are laid out in rows with a width of 'numcomulmns’.
For example if there are 9 regions laid out as follows: 1234 56 7 8 9 then neighbours of region 1

are 2,5.4, whereas neighbours of region 5 arel,2,3,4,6,7,8,9, etc.

your own functions : Other conditions can be defined using so called lambda functions in Python lan-
guage, such as “lambda x: x<100 and x>=5". For example “getAgentRegional ("Employee",

conditions = [("skill",lambda skill : skill<100 and skill>50)]) 7
subequals(index,what) : checks whether x[index]==what
subsubequals(index1,index2,what) : checks whether x[index1][index2]==what

Once an agent is selected, its variables can be accessed using a function called “getAgentVar(variablename)”.
For example: “getAgentGlobal("Bank", conditions = [("region_id", MooreNeighbour (10,getSelfVar("region
) 1).getAgentVar("id")”. If the selected variable is a struct or a list, its elements can be accessed using
a syntax similar to the examples given for “getSelfVar()”, e.g. “getAgent ("Bank") .getAgentVar("interestrates") ['
The agents are selected randomly by the current implementation of the above functions in PopGUI

to prevent procedural bias in selection.

Exclusive selection If one wishes to prevent others from selecting the same agent, it is possible to do
so by setting the ’exclusive’ flag to 1 in get Agent variants, i.e. “getAgentRegional ("Employee",exclusive=1)".
Once you do this, the selected employee will never be selected again. However one must be careful since
it is possible, depending on the composition of the population, that such conditions may not be satisfied

once all agents are taken.

Selecting multiple agents at once Two similar functions allow one to select all agents that match

the criteria, instead of only one:
getAllAgentsRegional(agentname,conditions=][])
getAllAgentsGlobal(agentname,conditions=[])

The variants accept same arguments as “getAgentRegional()” and “getAgentGlobal()”. However
what is returned is a list of agents. These functions has an optional argument which can be used to turn
of random shuffling of the returned agent list. For example getAllAgentsRegional(”Firm” ,randomize=0)
will always return the same list in the same order.

If one needs to process specific variables of the agents selected, you will need Pythonic expressions as

in the following example:

Chapter 7. Population Design with PopGUI 24

sum([agent.getAgentVar ("somevar"
for agent in getAllAgentsRegional ("Bank",

conditions=[("givescredit",equals(1l)), ("badreputation",equals(0))]1) 1)

The above expression is based on a Python construct which computes a list from elements of a given list,

e.g. “[i*i for i in [1,2,3]1]”

7.4.8 A note about managing dependencies

The group of functions getAgentGlobal/Regional() and getAllAgentsGlobalRegional() create a depen-
dency between agents. In some cases this creates cyclic dependencies which cannot be resolved by the
PopGUI. If desired you can solve such situations by using one of the two functions. First is signaling a

delayed execution of memory variable initialization:
delayedExecution("some expression"): the expression is executed after all agents and their variab

to evoid syntax errors due to quotes in your own expressions, use long string syntax in Python by putting

your expression in triple quotes. e.g.:
delayedExecution(\"""getAgentGlobal ("Bank") .getAgentVar ("id")\""")
Another function is available to fine tune dependencies at the level of variables instead of agents:

dependencyFineTune (type,toagent,tomemvar,expression)
e.g.:
dependencyFineTune ("Global", "Government","gov_id",
\"""getAgentGlobal ("Government",conditions=

[("regions",MooreNeighbour (3,getSelfVar("region_id")))]) .getAgentVar("gov_id")""")

7.4.9 Some useful Python constructs

Python has a simple syntax and some simple constructs can prove useful in expressing your memory
variables. We present some constructs here that are observed to be of common use based on feedback
from our users. For further information you are advised to consult Python tutorial at its website http:

//www.python.org.

Constructing lists : range(start,end[,step]) constructs a list which includes start but not end. If given

the list is incremented with the given step value.

Lambda functions : An anonymous function can be constructed using lambda function syntax. For

example a function to return true if a number is even would be ‘lambda x: x

http://www.python.org
http://www.python.org

Chapter 7. Population Design with PopGUI 25

List processing : A new list can be produced by processing numbers in a given list. For example to

return squares of a range of numbers ‘map(lambda x:x*x, range(1, 11))’.

If what you want is to select only items from a list that match a criteria, use filter. For example

to select even numbers from a list: ‘filter(lambda x: x

7.4.10 FINISHING UP: Validating and saving memory variable specifica-

tions

Before saving memory variables you can use the 'Validate’ button on the window, which provides ele-
mentary syntax checking of expressions you enter. After validation use “Save and close” button on the
memory variables screen to save your entries.

The validation operation only validates expression syntax and does not attempt a full initialization
and checking of expressions and references for fitness. Thus you may still catch some problems when you

attempt to instantiate population later.

7.5 STEP 4: Editing constants

The constants defined in your model will be assigned a value of zero initially. You can change these values
using the “Edit Constant” toolbar button. The constants screen also have a “Validate” button to ensure
the expressions you have entered are valid, before you save them.
Instead of numbers, you can also use getAgentCount(”agent name”) as a value for constants.
Unless you set sensible values to constants, it is likely that you will get errors like “division by zero”

when you validate memory variable specifivations that use these constants.

7.6 STEP 5: Instantiating population and finishing up

Once you finish entering memory variables and update your changes using the ’save and close’ button,
you can create an instance of the population (i.e. the 0.xml file in EURACE parlance) using 'Instantiate
population’ button. You will be asked for the name of the file to export the population.

Depending on the number of agents in your population this process can take a long time, and the
progress will be displayed on the main screen. You can cancel this operation using the “Cancel” button
at any time.

Once you are finished working with your population remember to save it before you quit the program.
Later you can re-open them from the file menu, and create new population instances for the same
population. Different instances will not be the same but will have same statistical distributions adhering

to your specifications.

Chapter 7. Population Design with PopGUI 26

7.7 Command line options, utilities, and debugging

PopGUI accepts a few command line options when run from command line instead of from within

ConGUI. Use:

python popgui.py -h

to display help on these options. Option “-v” will display program version, and “-d” will turn on
debugging so that program will dump a lot of messages in the terminal it is being run, which can be
helpful in reporting bugs.

Also you can give a population file as command line argument for the program to open the population

during start up. For example:
python popgui.py -d test.pop

will open the population saved in “test.pop” and will turn on debugging while you work.

PopGUI uses versioning for the saved populations to identify the data structure changes that are
not backwards compatible, and denies to open populations that were created using past versions of the
program and are not compatible with the current version. You can disable version checking using “-i”
parameter at the command line, however it is strongly recommended that such usage should be avoided.

Distributed with the PopGUI is a small program named popdoc.py, which is for producing I¥TgXtables
for constants, population composition, and memory variables in the population specification. When the

program is run without any parameters, it will ask a few questions to produce desired output. When

given a tex file as command line argument, output is written to that file instead od screen.

7.8 NOTES

1. Avoiding dependencies whenever possible: The group of functions getAgentGlobal /Regional
getAllAgentsGlobal /Regional create dependency between agents. We have seen modelers using
these functions just to retrieve id’s of other agents. However the correct way to do that is to use
getAgentIDListGlobal/Regional. This is because all agents are created and given id’s before any
of them are populated with memory variables. Therefore retrieving agent id’s does not generate

any dependency, and is a faster operation.

2. Resolving dependencies: If you end up with a cyclic dependency, the first thing you can try is

to use delayedExecution()

3. Be careful with Lambda functions: When describing conditions in agent selection, you may
resort to using Python Lambda functions. However you must beware that lambda functions
are evaluated when they are called, not when they are created. For example if you want to

choose agents whose regionid is same with the choosing agent, you’d try a function like “lambda

Chapter 7. Population Design with PopGUI 27

x:x["regionid"]==getSelfVar("regionid")”. However the function is executed within the con-
text of agent being evaluated for selection, because of the inherent way how Python lambda func-
tions are evaluated. (This was the reason that functions such as subequals() subsubequals() were

created.)

4. Using external replicators to create hude populations: If you start PopGUI with ‘-r’ option,

the created xml files will have all agent ID numbers preceeded with the string ‘REPLACE_ID_’.

Chapter 8

Running Simulations through

ExpGUI

The experiment manager module is highly coupled with policy analysis module. Policy experiments
require comparison of outcomes of alternative simulations, where the compared cases correspond to co-
variation of several parameters among their corresponding ranges. ExpGUI facilitates creation of a series

of simulation tasks via a GUI, thus reducing errors in creation of policy experiments.

]

Using .POP File: . eS|
File Help
General Experiment Praperties

C: [FR&/EURACE Dissemination FET03/Demo Eurace_Model_Demojits_Jarger_population/0.pop

Population Fie in Use selectFle
Humber of initial XML fles 1
Number of batch runs per XML file 1[e

Defauitnumber of iterations 1000 (£

Select Executable
Select Folder

Simulation Executsble

Root directory for output

Description of the Experiment

Experiment Design
Type Name Description Value Min Max Step Usc=|| Agent/Snapshot Period Phase -
$mt |prnig 0011, A flsg to print ogging outputtoterni |0 | None| None| None| 13| 2 Snpshot 1 0 |
2 |mt 'r:lm(,t\shug 00r1, Aflag to print d ing outputtate.. 0 None None None 2 Firm I
3 int |number_of ban.. number of banks firms can ask loans 1 |__

4 double| gamma_const

5 double | alpha

ngth of logit rule for consumption

arameter for production function

55 None None None

0663 None None None

<[

"

e
0

None None None [7] |3 Household
L
e
»

4 Mall

5 Bank

£ Central Bank

Location of the 0.xmi File:

New POP file has been selected

Deploy Experiment| [Export HTML Report|
Browse 0.4 Fie | [Run Single Smulation

ExpGUI inherits an initial population file from PopGUI. It principally facilitates designer to run the

designed model for desired number of iterations within a policy experimentation. Policy maker is able to

Figure 8.1: Experiment Manager

test the designed model on following conditions:

28

Chapter 8. Running Simulations through ExpGUI

e sensitivity to policy parameters
e sensitivity to initial population

e sensitivity to stochastic process through out iterations.

Figure [8.1]is a snapshot of the experimet manager under Windows.

29

Chapter 9

Analysis of results using VisGUI

9.1 Overview

The VisGUI design takes an advanced GUI workspace approach where designers or policy makers can
import, visualize, analyze, edit and export simulation results.

The VisGUI architecture is designed aiming an overall modular implementation. It employs a Model
View Controller(MVC) scheme, which enables its modularity and extendability. Although the package is
a sub-module within EURACE Software Toolkit, it can be installed and run independently. This design
decision is taken for several reasons. First, this flexibility is targeted to allow it to be integrated for other
multi-agent computational tools as an analyses and visualization tool. For that reason, importation and
exportation of standard data formats are adopted for better interoperability. Second, it allows designers
or policy makers easily install and run VisGUI to perform analyses and visualizations of simulations data
which are generated elsewhere. Third, this decoupling feature allowed us to develop the application upon
existing GPIE] licensed tools and software. In return, after a maturation stage of the application, the
package will be made available publicly on public repositories{ﬂ as a GPL package. This will enable a con-
tribution back to the open source community and contribution from the developers from the community

to extend and maintain it in the future.

9.2 Features

A set of features are developed and made available to designers. The features are briefly listed below and

some snapshots of their use are given accordingly to ease presentation:

e Importing Simulation Results: The user is made able to import either result of a single

simulation or a set of it. If this option is opted, the application reads in a sample iteration and

!GNU Public License, see urlhttp://www.gnu.org/
2Such as urlhttp://sourceforge.net/

30

Chapter 9. Analysis of results using VisGUI 31

q Applications Places System .‘&Q — .a u ‘. . Bulent Ozel “ dil] 4 Mon Oct 19, 16:26

EURACE - Data Visualisation-and Analysis Workspace [=E|E=
Ele Tools Seitings Visualisation Analysis Window Help

¢ 8 VE 80 @ =

Log

-

WisGUIEEonnnmation .. the plot on fhome/bulent/Code

Plots and reports will be stored a
previously picked working folde
/home/bulent’Codelvisguiexpe:

@ An S0OLite database already exists in the folder:
I WG odevisgui/exp tlong
B VisGUI - Creat Do you want to replace it?

Experiment: =
l Ma to All] [@ No l [Yesto Al l l @ Yes] Previous simulation location is a]
/home/bulent/Code/visgul /home/bulent/Code/visgui/Eurag

lterations:

0.xml (7463K)
- - 100.xml (55K)
Create Experiment Database B VisGU! - Create Experiment Databas[8][x] 1000.xml (55K) M
) | 1020.xml (55k)
Experiment:
040.xml (55k)
|Z| [momemulenmouemsguuemenmemf] | 1060.xml (55k)
[0 CadeNisgul/exp r3/45.xmi] is dor| 1080.xml (55k)
1100.m (550
Time Leftjestimated): 00: 46: 01 1120l (55
1140.xm! (55k)
Create Experiment Database 1160.xml (55k)
1180.xml (55k)
120.xml (55K)
i|????i| 1200.xml (55k)
Status: Gathering experim 1220.xml (55k)
12220 xml (56k)
Time Left(estimate): hh:m 1240.xml (55k)
1260.xml (55k)
1280.xml (55k)
1300.xml (55k) =
| | [+
)
I bulent@x61s: ~/C... H [# visguitex [~/Docu...][@ KnowledgeDiffusion. . IE Xpdf: D8.2.pdf] B FURACE - Data Vis...] | | |

Figure 9.1: Parallel Database Creation

retrieves information on the set of agents and their available memory variables. This automatically

detected set of memory variables are used automatically to populate variable menus.

e Database Creation: The creation of a database is necessary when there is a very long and large
simulation. It is also necessary when there are a set of policy experiment results. Created database
speeds up time to visualize and analyze the results. It also allows portability of experiment results
in a standard and light format to other platforms and visualization applications. We have taken
a novel approach to integrate database creation into the application. It exploits multi-threading
and parallelisation paradigms both to decrease the time of database creation and to keep doing

analysis at the main workspace during any lengthy process of database creation. See Figure [0.]]

and Figure

e Visualization of Time Series of Memory Variables: The nature of simulation necessitates a
quick trace of some variables over iterations before further examination or more advanced policy
experiments. User can directly check raw simulation data to examine time series of a memory

variable. See Figure [9.3]

e Visualization of Distribution of Memory Variables: In the same manner as a quick time

series visualization of raw data, users are also allowed to examine distribution of a variable at a

Chapter 9. Analysis of results using VisGUI 32

q Applications Places System BQQ} é ‘!‘3 % @ “ Bulent Ozel E @ dil] 4 Mon Oct 18, 16:52

B EURACE - Data Visualisation and Analysis Workspace QEE

File Tools Seitings Visualisation Analysis Window Help

ol VEEa @@= 4

! Eurosiat-average_wage.png [:][am] Log (53]
[Eurostal-no_households_skill_5.png [=l=lx]] =
Eurostai-employed.png m[a[;n An SQLite database is being created for
ok el /home/bulent’Codeiisgui/experiment/
Stari Time: Mon Oct 19 16:25:09 2009
B VisGUI - Create Experiment Database =RES
1:Eurcsial.average_s_skil (for

§ ' . fexperiment/1
9 new SCLite database file(s) creation succeeded for the experiment data at

/homebulent/Code/visgui’Eurace_Model_Demo_runs/experiment/1/ Browse ded _ |
24 Lie
base
ag
e
= »
g | 9o {uilg
=
o
> Database creation is complete. e

0.4

uife
Cancel

ag

0.2

the plot on thome/bulent/Codelvisguirg

0.0
L

An histogram of Eurostat - no_househol

o 200 400 600 800 1000 Available Agent Variables:
iterati Firm :
L iterations
- mean_wage(double)
- needed_capital_slock(double) —
-
£l I [+]
|=| | B bulent@x61s: ~/Doc... || ' [visguitex (~/Docum... | = [screenshots - File Br... || Bl EURACE - Data Visua... | E |

Figure 9.2: Parallel Database Creation

desired iteration.See Figure [0.4]

e Advanced Visualization of Policy Experiments: The application also allows designer to
examine impact of a policy parameter on macro results, sensitivity of the computational model
to an initialization and effects of random interactions in between agents across different runs by
advanced visualization tool of the application. The feature allows to examine multiple variables at

the same time very quickly. See Figure [9.5

e Automatic Report Generation of Data Points: This feature allows designers to view sum-

mary statistics and exact data points of visualization of a variable.

e Exporting Raw Data of Plots: The feature allows to export data points of a plot in standard
data format, presumably to be tested or re-visualized by a different application. See Figure [0.6]

e Managing Generated Reports and Plots: Analyses and visualizations of an experiment results
in many reports and plots. This set of feature allows user either visualize or close them easily or

automatically store them on a secondary memory space.

e Automatic Storage and Re-storage of State of Application: This feature allows both the

main application and all interactive GUI dialogs to store its latest state for subsequent uses.

Chapter 9. Analysis of results using VisGUI

-{j" Applications Places System E{’e@ S1=1 . @ 3% @ “ Bulent Ozel (@ [T gill w0 Fri Feb 27, 22:47 E
-] EURACE - Data Visualisation and Analysis Workspace [=1I a x|

File Tools Seitings Visualisalion Analysis Window Help
$VHEd A -4

° kirm-phnmd;auipui png

Firm-planned_output -report _‘ET Log

(o)
&

Min. 1stQ. Median 3rd Q. Max

lterations: \\.

0.xml (6539K)
1.xml (7618k)

% Firm:'planned_outpy

1st-3rd Qu

w | — Median @ VisGUI - EURACE Data Visualisation and Analysis Tool v 0.4.0
== QOuter Hinges

250

GNU GPL

This application is designed to visualise, to analyse, to export resulis of
EURACE simulation outputs.

Frequency

100

10
I

Python 252 -Gt4.3.4 - PyQt4.33-R27.1 - rpy 2.0 on Linux

value

4l ox

Fe BTl T R—
0 21 xml (7636K)
22 xml (7635K)
23 xml (7634K)
24 xml (7633K)
25 xml (7632K)
fesaisneses ‘ | } """" 26.xml (7632K)
27 xml (7632K)
28 xml (7632K)
T T T T 29 xml (7632K)
iterations 1 2 3 4 3xml (7620K)
30.xml (7632K)

ElI] [v)

(4]

general_skill

=

el

& [[bulent@X61s: ~/Co.. | @ EURACE - Data Visua...

Figure 9.3: Visualization of Time Series a Variable

33

e GUI Interaction and Validity Checks: All of GUI dialogs are interactive to user preferences

and automatically checks validity of user actions.

e Writing and Editing Reports: VisGUI Workspace provides a text editor with basic functions

to enable user to write reports or edit automatically generated reports for convenience.

e Logging Status and Actions in the Workspace: All major user actions are logged and

displayed. The user can scroll and examine his/her previous actions.

e File Operations: All basic file operations including printing options are provided. See Figure[0.7}

e Configuring Workspace: The application provides configuration options for the workspace, its

state, and automatic management of produced plots and reports. See Figure

e Help Menu: VisGUI provides an HTML based navigable help interface.

9.3 Using VisGUI

In this section, we will very briefly demonstrate how VisGUI can be used.

Chapter 9. Analysis of results using VisGUI

quphcations Places System wr
]

[

eh o ¢

Bulent Ozel

B i) 5 mon oct 19, 16:39

EURACE - Data Visualisation and Analysis Workspace =& [E
File Tools Seitings Visualisation Analysis Window Help
ol VEEa @@= 4
. Euroslat-average_wage.png E]@ E] Log
F
Eurostat:'average_wage' ... the plot on /home/bulent’Code
Plots and reports will be stored a
leration | 20
ECTostat e
B = [hd previously picked working folde
S Agent [Eurcstat] /home/bulent’Codevisguilexpel
F-
E ° Memory [nc_hcusﬂhclds_gqu_s Previous simulation location is a
. /home/bulent/Code/visgui/Eurag
=

Frequency

B meds2png [# o= |E

no_households_skill_5

lterations:
D.xml (7469K)
100.xml (55k)
1000.xml (55K)
1020.xml (55K)
1040.xml (55K)
1060.xml (55K)
1080.xml (55K)
1100.xml (55K) =
1120.xml (55K)
1140.xml (55K)
1160.xml (55K)
1180.xml (55K)
120.xml (55k)
1200.xml (55K)
1220.xml (55K)
12220 xml (56K)
1240.xm| (55K)
1260.xml (55K)
1280.xml (55K)
1300.xml (55K)

(4]]

I bulent@x61s: ~/Dac... I[("% visguitex (~/Docum...]@ screenshots - File Br...][! EURACE - Data Visua. ..]

Figure 9.4: Visualization of Distribution of a Variable

9.3.1 Platforms

34

VisGUI is developed and tested both in Linux and Windows environments. The application will also be

adopted for MAC platforms.

9.3.2 External Packages

The application is being implemented using Python2.5 and Qt4. All distributional statistics, and time

series analysis and inference analysis are being performed by employing and integrating RPy2. RPy has

provided an efficient and practical Python interface to the R Programming Language. More specifically,

the software is implemented using Python 2.5 with the help of following packages:

e GUI PyQt4.QtGui

e XML: PyQt4.QtXml

e Statistics: RPy 2

e DB: SqlLite

Chapter 9. Analysis of results using VisGUI

QApphcations Places System Bea ﬁ.ﬁ w ‘. Bulent Ozel

{2 @ il i von oct 19, 16:47

B EURACE - Data Visualisation and Analysis Workspace QEE
File Tools Seitings Visualisation Analysis Window Help
a . A =i I
¢ @ VOB @A = &
! Euroslat-average_wage.png [:][am] Log [E3]
B - _akil_5.png MEE) o
Eurostat-employed.png m[a[;n An S0Lite database is being created for
Bas2.png oE umeulenﬂCoeN\uiixp\
VisGUTI=Advanced Time series and Ensemble Plots =N
Plck an experiment: Start teration: 12 Multiple Variable Plots:
2I_Dr 1S4 t 5 i
= |= _ljamo_funs/experiman] [Browse l End lteration: 241 a (@ 1slQuarlile (Q1)
Pick an initial population: _
1 -
o | l ‘l (@ Medians
< Pick a parameter: 5 EHIETEES L
[1 g ' 1
@ .
S Pick & bateh run: Selected Variables:
LH P
E [AII - l Household.bank_ld(int) Single Variable Plots:
> < Government.gdp(double)
4 Variables: Governmentgdp_forecast{double) (@ Box-Whisker Iterations
Government.hh_subsidy_payment{double) i
Agent Memory (@ Box-Whisker Batches
Add —
o gdp(double)) Box-Whisker Parameters
< gdp_forecastidouble)
gdp_fraction_consumption{doub () Box-Whisker Populations
gdp_fraction_investmentidouble;
24 gdp_growth(double) q D
T gov_interest_rate(double)
o F| hh_subsidy_payment({double)
o hh_transfer_payment(double) Remove] [Remave Al] [Cancel l
= Kl I]
g
L L
| bulent@x61s: ~/Dac... ” [%% visguitex (~/Docum.. H .. [screenshots - File Br.., | B EURACE - Data Visua... | i | |

Figure 9.5: Visualization of Advanced Time Series Plots of an Experiment

9.3.3 Standalone Installation

35

The modular design approach of VisGUI allows it to be installed and used as a standalone application.

This flexibility will allow the package to be later developed as an platform and economic model indepen-

dent workspace which can be used to analyse and and visualize results of other computational economics

platforms.

9.4 Summary

The section has presented a brief overview of VisGUI. The modular approach of the its implementation

and its major design principles will provide us to further develop it and share it with computational

economics community in the future.

Chapter 9. Analysis of results using VisGUI 36

QApphcations Places System g (ﬁ.a,‘ u ‘. Bulent Ozel ﬁ u il ®} Mon Oct 19, 16:57

EURACE 1 Data Visualisation and Analysis Workspace .- e

Flle Tools Seftings WVisualisation Analysis Window Help

oo vODead [@A= &

ENrosial=average s wagenng|

Log

9 SQLite database file(s) has been creat
/home/bulentCodeNisgui/Eurace_Mode:
Finish Time: Mon Cct 19 16:51:25 2009

Lookin: |G s WCadevisguiiexperiment e D e = @

g butent | | (55 wins2
E Computer| | [E5 base
& 0a

Available Agent Variables:

Firm :

-- mean_wage(double)

- needed_capital_stock(double)

-- actual_cap_price(double)
--mean_specific_skills(double)
--planned_production_quantity(double)
-- production_guantity(double)
--planned_output(double)

- output{double)

- unit_costs(double)

- total_supply(double)

-- production_costs(double)

- revenue_per_day(double)

- technological_frontieridouble)

-- cum_revenue(double) ||
- out_of_stock_costs(double)
--malls_sales_statistics{array).mall_id{i
--malls_sales_statistics{array).sales(arr ~
--malls_sales_statistics{array).sales(arr
- quality(double)

-- price(double)

- price_last_month{double)

- demand_capital_stock(double)
--planned_production_costs(double)
~ adaption_production_volume_due_to/—|

Ll w | v~

Frequency

4 e

Fiorame: [Euroitavarage_ago e I=ES

Hlscftype:[csvmes(“mv) ;] € cancel
ik

[bulent@x61s: ~/Doc...][" [visguitex (~/Docum...]L‘E' [screenshots - File Br...][! ELIRACE - Data Visua...]

Figure 9.6: Exporting Raw Data of Plots

Chapter 9. Analysis of results using VisGUI

Bulent Ozel

QApphcations Places System Qr

{5 49 il €t Mon oct 19, 17:00

|
B EURACE - Data
Flle Tools Seftings WVisualisation Analysis Window Help

(= Jl=)lx]

Log

@
=

9 SQLite database file(s) has been creat
/home/bulentCodeNisgui/Eurace_Mode:
Finish Time: Mon Cct 19 16:51:25 2009

Available Agent Variables:

Firm :

-- mean_wage(double)

- needed_capital_stock(double)

-- actual_cap_price(double)
--mean_specific_skills(double)
--planned_production_quantity(double)
-- production_guantity(double)
--planned_output(double)

- output{double)

- unit_costs(double)

- total_supply(double)

-- production_costs(double)

- revenue_per_day(double)

- technological_frontieridouble)

-- cum_revenue(double)

- out_of_stock_costs(double)

- malls_sales_statistics(array).mall_id(i
--malls_sales_statistics{array).sales(arr ~
--malls_sales_statistics{array).sales(arr
- quality(double)

-- price(double)

- price_last_month{double)

- demand_capital_stock(double)
--planned_production_costs(double)

~ adaption_production_volume_due_to/—|

==
5
H VisGUIT=Print Plot
e
E Printer
o Mame: [offce-laserjet :][Properties]
Location: X@1s
Type: HP - HP LaserJet P2015 Series
w| | Outputfile: [momee‘bu\ent*Code.-‘wsgule'trunk-’pnnt.pm l =
=
2 e
o [=]
>
o |
=
w0
2
o
2
T T T T
0 200 400 600
a
v T - iterations
-1.0 -0 U u: U ||

(4] 11l |

[bulent@x61s: ~/Doc...][% visguitex (~/Docum...]L-E' [screenshots - File Br...][! ELIRACE - Data Visua...]

Figure 9.7: File Operations

37

Chapter 9. Analysis of results using VisGUI

Bulent Ozel

{5 9 ail] €t Mon oct 19, 16:50

value[;

!_Bm—-nqmynpm.m =

Pick files by type:
Remove session plots Remove session reports
The files, which are newly created during current session and are not on

display when application is closed, are going fo be deleted permanently!

Bank-
B Eurostat
Eurg
= [=]
2
[o Brage HOUGIe)rEp0 o
o —_—
E lterld Min. 1stQ. Median 3rd Q. Max. =
0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
0020 +0.8141 +0.6142 +0.6142 +0.6142 +0.6142
0040 +0.6236 +0.6236 +0.6236 +0.6238 +0.6239 =
0080 +0.8315 +0.8315 +0.8316 +0.8317 +0.6318
0080 +0.6399 +0.6399 +0.6400 +0.6401 +0.6403
0100 +0.6488 +0.6489 +0.64390 +0.64390 +0.64390 |
0120 +0.8572 +0.8572 +0.8573 +0.6574 +0.8575
0140 +0.6648 +0.6649 +0.6650 +0.6652 +0.6653
0160 +0.6720 +0.8721 +0.6722 +0.6725 +0.6727 —
-

(= Jl=)lx]

Log

@
=

9 SQLite database file(s) has been creat
/home/bulentCodeNisgui/Eurace_Mode:
Finish Time: Mon Cct 19 16:51:25 2009

Available Agent Variables:

Firm :

-- mean_wage(double)

- needed_capital_stock(double)

-- actual_cap_price(double)
--mean_specific_skills(double)
--planned_production_quantity(double)
-- production_guantity(double)
--planned_output(double)

- output{double)

- unit_costs(double)

- total_supply(double)

-- production_costs(double)

- revenue_per_day(double)

- technological_frontieridouble)

-- cum_revenue(double)

- out_of_stock_costs(double)

- malls_sales_statistics(array).mall_id(i
--malls_sales_statistics{array).sales(arr ~
--malls_sales_statistics{array).sales(arr
- quality(double)

-- price(double)

- price_last_month{double)

- demand_capital_stock(double)
--planned_production_costs(double)

~ adaption_production_volume_due_to/—|

Ll w | v~

[bulent@x61s: ~/Doc...][% visguitex (~/Docum...]LE [screenshots - File Br...][! ELIRACE - Data Visua...]

F

igure 9.8: Configuring Workspace

38

Appendix A

Manual installation from sources

A.1 Installing PopGUI

PopGUI is written in Python language for faster development and portability reasons. It uses GTK+ for
its graphical user interface, Therefore PopGUI will run on any platform for which Python (version 2.5 or
higher) and GTK+(version 2.0 or higher) is available, including GNU/linux, Microsoft Windows, most
Unixes, and others.

The program itself consists of two files only: poplib.py which contains the library functions, and
popgui.py which provides the GUI. Follow the instructions below for your operating system to start using

PopGUI.

A.1.1 Installation on GNU/Linux

Install python-gtk2 package. Then place poplib.py and popgui.py into some directory, and run popgui.py.

If you want to do these from a command line, do as follows (example for Debian or Ubuntu Linux):

$ sudo aptitude install python-gtk2

$ python popgui.py

A.1.2 Installation on Windows

Install the following in order (See http://www.pygtk.org/downloads.html for detailed instructions and

links for setting up Python with GTK support):
1. Python 2.5 or newer
2. GTK+ win32 runtime
3. PyCairo

4. PyGObject

http://www.pygtk.org/downloads.html

Appendix A. Manual installation from sources

5. PyGTK

After that copy poplib.py and popgui.py into a directory, and run popgui.py.

A-2

	List of Figures
	Executive Summary
	Introduction
	Requirements and Installation
	Installing required software
	Installing EURACE-GUI from binary distribution
	Installing EURACE-GUI from sources

	Overview of Agent and Population Design Process
	Agent Design with XMML-Editor
	Compiling Agents with GXparser
	Population Design with PopGUI
	Using PopGUI
	STEP 1: Creating a population
	STEP 2: Specifying population composition
	STEP 3: Specifying agent memory variables
	Distinguishing simple and composite variables
	Specification syntax for variables and basic random distributions
	Deterministic initialization
	Using other memory variables of agent in expressions
	Initializing arrays
	Using model constants or population size for scalability purposes
	Accessing other agents and initializing agent relations
	A note about managing dependencies
	Some useful Python constructs
	FINISHING UP: Validating and saving memory variable specifications

	STEP 4: Editing constants
	STEP 5: Instantiating population and finishing up
	Command line options, utilities, and debugging
	NOTES

	Running Simulations through ExpGUI
	Analysis of results using VisGUI
	Overview
	Features
	Using VisGUI
	Platforms
	External Packages
	Standalone Installation

	Summary

	Manual installation from sources
	Installing PopGUI
	Installation on GNU/Linux
	Installation on Windows

