Tutorial
Agent-based Programming
using FLAME

Bielefeld University
12-15 Oct 2010

J.-Prof. Dr. Sander van der Hoog

Lerhstuhl fur Wirtschaftstheorie
svdhoog@wiwi.uni-bielefeld.de

Overview for today

Schedule and organization

What is agent-based modelling?
Introduction to C programming language
Introduction to FLAME Framework

Simple exercises

Schedule and organization .

14.00 - 15.00: C - theory
15.00 - 15.45: C - exercises

15.45 - 16.00: Break

16.00 - 17.00: FLAME - theory
17.00 - 18.00: FLAME - exercises

What is FLAME?

 FLAME stands for: Flexible Large-scale Agent
Modelling Environment F LAM E
Flexible Large-scale
Agent Modelling

« An easy agent-based modelling environment Environment

« Based on a formal model of computation:
X-machines

» Used in a European research project: EURACE
on Agent-based Macroeconomics

» Other projects range from biology to crowd
simulation: cells to organisms

» Uses the C language as a basis

What are agents?

 Agents are software objects that have
states and rules to change states
(transition functions).

e Agents are:
- ldentifiable (distinct from other agents)
- Autonomous (make decisions)
- Purpose-driven (have goals)
- Adaptive (change behavior)
- Interactive (communicate)
- Social (part of agent society)

What is an Agent-Based Model? .

« Agent-Based Models (ABMs) are software
systems consisting of agents.

« A generative (bottom-up) approach

« Benefits:
- Involves natural description of a system
- Flexible and extensible
_ Can reproduce emergent phenomena

Model development cycle

ABM Design ABM Development ABM Use

Problem formulation Model prototyping Experimental design

Conceptual model Architectural Design Data Initialization

Quantified model Agent Rule Design

Implementation Analysis, Visualization

Results Presentation

Yerification and Validation

FLAME Tutorial 1:
Understanding FLAME

FLAME consists of two components

 Xparser
- Tool that generates application based on defined model
- Can generate both serial and parallel simulations
- Generates state diagrams
- Generates Makefile (automate compilation)

* Message Board Library
- Supporting library that handles data management
- Enables agents to interact efficiently with environment
- Allows the simulation to be run in parallel

Using FLAME

Describe the model

Code behaviour of each =
agent S

Generate simulation code
using the Xparser N

Build the executable using <
“make”

Agent
functions

* Compiles code to object
files

* Links with necessary
libraries, include
Message Board library

Run the executable on an
Initial population

Observe results

Model XMML

- Simulation code

COMPILE

Vv

b
I
v |
I
Executable @

libmboard

=
Ve

Object files (*.0)

LINK

10

Creating a model|

What do you need to define?

- Agents
- Memory
- Behaviour
- States

« Messages (information flow between agents)

« Optional extras
- Environment constants (model parameters)
- Custom data types
- Custom time units
- Function activation conditions

11

Agents

Agents defined based on formal concept of Communicating
Stream X-Machines (CXSM)

0]

L

input stream output stream

12

Message Boards

Agents communicate through message boards.

Firms post Households u

job vacancy read list of ‘;’
messages vacancies

Households can selectively

read messages using filters. I
* salary > 1000 and skill level = 4 u

13

For efficiency and consistency, there are some constraints:

* No direct agent-to-agent communication

- All communication goes through the message board
- Use message filters to achieve same effect

* Agents cannot remove messages from boards
- Boards are automatically cleared after each iteration!

* Agents cannot both write and read the same board within
a function (same type of message)

- Use separate functions. First write, then read.

14

Parallelism in FLAME

“Agents interact with other agents only through messages”

Parallelism achieved by:
* Distributing agents across multiple processors
* Ensuring that agents have equal access to messages

PARALLEL

15

Features of FLAME

B Simple C functions are re-usable blocks of
code.

B Use messages for agent communication.

B Agent functions are automatically scheduled
and activated (by layers, conditions).

B Message filtering based on agent/message
variables.

B (C source code linked to XML

B Nested hierarchical models

Questions so far?

17

Tutorial 2:
Functions and stategraphs

18

Function stategraph

Agent 1 Agent 2

* Agents are prototypes,
not individuals! (E.g. _
Firms, Households, Curent state: 00 Current state: 00

Mext state: 01 Mext state: 01
etc.)

—(®)

e Functions are separated

by states (o)

* Modular code: functions

)

can be re-used o _

. . . unction Function A
multiple times in et o ot res on.
stategraph

* BUT: no cyclical function
dependencies! e

(—

Agent interaction by messages

Agent type 1, Function A
sends a message

Agent type 2, Function D
reads the message

Sending function is
always (!) above
reading function

All agent 1s have to finish
Function A before
Agent 2s can start
Function D.

Agent 1

Function &
Current state: 00
Mext state: 01

Function B
Current state: 00
Mext state: 01

Function C
Current state: 01
Mext state: 02

-

Function D
Current state: 01
Mext state: 02

() —

20

Function layers

Agent 1 Agent 2

* Sending and reading
functions cannot be in

mo

same function execution Function A Function B
Current state: 00 Current state: 00
|ayer Mext state: 01 Next state: 01

()

Function C Function D
Current state: 01 Current state: 01
Mext state: 02 Mext state: 02

(=

21

Function layers (2) -

Agent 1 Agent 2
®
* Solution: Function D is Function A

Current state: 00
Mext state: 01

shifted down
automatically to the
next execution layer @

¥ L

Function B
Current state; 00

Mext state: 01

Furction C
Current state: 01
Next state: 02

|

Function D¢
Current state: 01
Mext state: 02

vy

(2

Function layers (3)

Further shifting
occurs by
multiple
messages

Agent 1

Function A
Current state: 00
Next state: 01

order_msg

delivery_msg

h 4

Function C
Current state: 01
Mext state: 02

Agent 2

A

Function B
Current state: 00
Mext state: 01

Function D
Current state: 01
Next state: 02

Stategraph

Agent 1
* Same agent type can also ﬂ e
send a message to itself
(intra-type communication) Function A Cunction B
Current state: 00 Current state: 00
Mext state: 01 Mext state: 01

* As long as reading function is
below sending function

(2
* Examples:

- social relationships [function € _ FunctionD
Mext state: 02 ext state:

- consumer word-of-mouth ext state: 02

- inter-firm communications

(o

10

Tutorial 3:
Main functionality

25

Learning Objectives

B QOverview of XML structure
B Extra features

B Advanced examples

Model structure

B Model description file: model.xml
B Header: descriptive part
B Models

B Environment

B Agents

B Message definitions

Messages

Labour and Goods
Markets

Data

Types

Financial
Market

Credit
Market

Time

acales
"

Dummy
Financial
Market

Dummy
Credit
Market

Nested models

B File: relative path to model.xml
B Enable/disable
B Agents can be defined across

different nested model.xml files

Environment tag

B constants: global parameters
B functionFiles: link in C code
B timeUnits: user-defined

BdataTypes: user-defined

Constants

B Defined same as variables
BType
B Name

B Description

FunctionFiles

B XML: C source code is linked in by function files

B C: In code files, headers are included to link
FLAME generated code:

Time Units

B XML Environment defines time units

B Functions can have time conditions

B Period: periodicity of time unit,
based on fundamental time

unit iteration

DataTypes

B Similar to C structures.
B UUsed in agent memory for variables

B Can be used in C functions as well.

Agents

B Name (archetype name)
B Description
B Memory

B Functions

Memory

B \Variable
B Type
B Name

B Description

Functions

B Name
B Description
B Current state

B Next state

Messages

B Name
B Description

B Variables

Extra features of FLAME

B Simple C functions are re-usable blocks of
code.

B Use messages for agent communication.
B Agents are automatically activated (turns).

B Function activation based on time schedules,
or event-based.

B Message filtering based on agent/message
variables.

B Message pre-sorting, randomization by FLAME

Tutorial 4:
Function conditions

40

Function conditions

B Functions are activated based on conditions:
— Time-based: add a time condition
— Event-based: add a memory condition

B |mportant note:

— From every state, all possible branching
conditions must be mutually exclusive.

— From every state, there must be at least
one condition that is true (else the agent
reaches its end state).

Function activation: memory conditions -

aage GT (hpot { a.age GTO)

layer 0 Function_1 idle
layer 1 Function_2
layer 2 Function_3

Function activation: time conditions -

layer () Function_1
Perwdictty: yearly \not { Penodicity: yearly
Phase: a-=hirthdate | Phase: a-=hirthdate)
layer | Function_2 idle

Time conditions can also refer to agent
memory variables:

-HJIIIH2 .

Messages

B Messages are input/output to functions

Message loops

B C: Messages are added to the message board

B C: Agents are looping through the messages

B Note: all messages are processed; filtering can
be done!

Households can selectiv
read messages using filters.
* salary > 1000 and skill
level = 4

Message filters

B XML: Messages can be filtered using filter
conditions on the input messages

B Filter operators: EQ (==), NEQ (=), LT (<), GT
(>), IN (arrays)

B Use: value of a memory variable (OP) value of
a message variable.

B Example:

ID == message ID

Tutorial 5:
Linking XML and C code

49

Linking XML to C

FLAME generated header files included in the C source
code

C source code files are included in the XML model

C source code:

- Using memory variables: CAPITALIZED names

- All memory variables retain their values

- Looping over messages: FLAME message loop code

Nested models: can be enabled/disabled in XML

50

Including Function Files

B Assume: each agent has its own functions file.

B XML: C source code is linked in by function files

B C: In C source code files, headers are included to
link to FLAME generated code:

Message looping in C

B C: Messages are added to the message board

B C: Agents are looping through the messages

B Note: by derault all messages are processed;
however: filtering can be done!

Using memory variables

B C: Memory variables are capitalized in C to
retrieve and assign values:

B C: Arrays and datatypes:

Summary

Simple C functions are re-usable blocks of code in the XML
model definition.

Agent functions are automatically scheduled and activated
(by layers, conditions).

Use messages for agent communication.

Function activation based on time schedules, or event-
based (agent variables).

Message filtering is based on agent or message variables.
Message pre-sorting, randomization can be done by FLAME.

54

