
Tutorial
Agent-based Programming

using FLAME

Bielefeld University
12-15 Oct 2010

J.-Prof. Dr. Sander van der Hoog

 Lerhstuhl für Wirtschaftstheorie
svdhoog@wiwi.uni-bielefeld.de

2

Overview for today

• Schedule and organization

• What is agent-based modelling?

• Introduction to C programming language

• Introduction to FLAME Framework

• Simple exercises

3

Schedule and organization

14.00 - 15.00: C - theory

15.00 - 15.45: C – exercises

15.45 - 16.00: Break

16.00 - 17.00: FLAME - theory

17.00 - 18.00: FLAME - exercises

4

● FLAME stands for: Flexible Large-scale Agent
Modelling Environment

● An easy agent-based modelling environment

● Based on a formal model of computation:
X-machines

● Used in a European research project: EURACE

on Agent-based Macroeconomics

● Other projects range from biology to crowd
simulation: cells to organisms

● Uses the C language as a basis

What is FLAME?

5

What are agents?

• Agents are software objects that have
states and rules to change states
(transition functions).

• Agents are:
– Identifiable (distinct from other agents)

– Autonomous (make decisions)

– Purpose-driven (have goals)

– Adaptive (change behavior)

– Interactive (communicate)

– Social (part of agent society)

6

What is an Agent-Based Model?

• Agent-Based Models (ABMs) are software
systems consisting of agents.

• A generative (bottom-up) approach

• Benefits:
– Involves natural description of a system
– Flexible and extensible
– Can reproduce emergent phenomena

7

Model development cycle

8

FLAME Tutorial 1:
Understanding FLAME

9

FLAME consists of two components

• Xparser
– Tool that generates application based on defined model
– Can generate both serial and parallel simulations
– Generates state diagrams
– Generates Makefile (automate compilation)

• Message Board Library
– Supporting library that handles data management
– Enables agents to interact efficiently with environment
– Allows the simulation to be run in parallel

10

1. Describe the model

2. Code behaviour of each
agent

3. Generate simulation code
using the Xparser

Using FLAME

4. Build the executable using
“make”

• Compiles code to object
files

• Links with necessary
libraries, include
Message Board library

5. Run the executable on an
initial population

6. Observe results

11

Creating a model

What do you need to define?

• Agents

– Memory

– Behaviour

– States

• Messages (information flow between agents)

• Optional extras

– Environment constants (model parameters)

– Custom data types

– Custom time units

– Function activation conditions

12

Agents defined based on formal concept of Communicating
Stream X-Machines (CXSM)

Agents

13

Message Boards

Agents communicate through message boards.

Firms post
job vacancy
messages

Households
read list of
vacancies

Households can selectively
read messages using filters.
• salary > 1000 and skill level = 4

F

14

For efficiency and consistency, there are some constraints:

• No direct agent-to-agent communication

– All communication goes through the message board
– Use message filters to achieve same effect

• Agents cannot remove messages from boards
– Boards are automatically cleared after each iteration!

• Agents cannot both write and read the same board within
a function (same type of message)
– Use separate functions. First write, then read.

15

Parallelism in FLAME

“Agents interact with other agents only through messages”

Parallelism achieved by:
• Distributing agents across multiple processors
• Ensuring that agents have equal access to messages

Features of FLAME
Simple C functions are re-usable blocks of

code.

Use messages for agent communication.

Agent functions are automatically scheduled
and activated (by layers, conditions).

Message filtering based on agent/message
variables.

C source code linked to XML

Nested hierarchical models

17

Questions so far?

18

Tutorial 2:
Functions and stategraphs

19

Function stategraph

• Agents are prototypes,
not individuals! (E.g.
Firms, Households,
etc.)

• Functions are separated
by states

• Modular code: functions
can be re-used
multiple times in
stategraph

• BUT: no cyclical function
dependencies!

20

Agent interaction by messages

• Agent type 1, Function A
sends a message

• Agent type 2, Function D
reads the message

• Sending function is
always (!) above
reading function

• All agent 1s have to finish
Function A before
Agent 2s can start
Function D.

21

Function layers

• Sending and reading
functions cannot be in
same function execution
layer

22

Function layers (2)

• Solution: Function D is
shifted down
automatically to the
next execution layer

23

Function layers (3)

• Further shifting
occurs by
multiple
messages

24

Stategraph

• Same agent type can also
send a message to itself
(intra-type communication)

• As long as reading function is
below sending function

• Examples:

– social relationships

– consumer word-of-mouth

– inter-firm communications

25

Tutorial 3:
Main functionality

Learning Objectives
Overview of XML structure

Extra features

Advanced examples

Model structure
Model description file: model.xml

Header: descriptive part

Models

Environment

Agents

Message definitions

<xmodel version="2" >
 <name>
 <version>
 <description>

 <models>
 <environment>
 <agents>
 <messages>
</xmodel>

Nested models
File: relative path to model.xml

Enable/disable

Agents can be defined across

 different nested model.xml files

<models>
 <model>
 <file> [Path/model.xml] </file>
 <enabled> [true|false] </enabled>
 </model>
</models>

Environment tag
constants: global parameters

functionFiles: link in C code

timeUnits: user-defined

dataTypes: user-defined

 <environment>
<constants>
<functionFiles>
<timeUnits>
<dataTypes>

 </environment>

Constants
Defined same as variables

Type

Name

Description

<constants>
<variable>

<type>
<name>

<description>
<variable>
...

</constants>

FunctionFiles
 XML: C source code is linked in by function files

 C: In code files, headers are included to link
FLAME generated code:

<functionFiles>
<file>Source_code_file_1.c</file>
<file>Source_code_file_2.c</file>
</functionFiles>

#include "../header.h"
#include "../Agentname_agent_header.h"
#include "../my_library_header.h"

Time Units

XML Environment defines time units

Functions can have time conditions

Period: periodicity of time unit,

based on fundamental time

unit iteration

<timeUnits>

<timeUnit>
 <name>daily</name>
 <unit>iteration</unit>
 <period>1</period>
</timeUnit>

<timeUnit>
<name>monthly</name>
 <unit>daily</unit>
 <period>20</period>
</timeUnit>

</timeUnits>

DataTypes
Similar to C structures.

Used in agent memory for variables.

Can be used in C functions as well.

<dataTypes>
<dataType>
<name>
<description>
<variables>

<variable>
...
</variable>

</variables>
</dataType>
...

</dataTypes>

Agents
Name (archetype name)

Description

Memory

Functions

<agents>
<xagent>

<name>Firm</name>

<description></description>
<memory>
<functions>

</xagent>
...

</agents>

Memory
Variable

Type

Name

Description

<memory>
<variable>

<type>int</type>
<name>id</name>

<description>...</description>
</variable>
<variable>

<type>double</type>
<name>xvar</name>

<description>...</description>
</variable>
</memory>

Functions
Name

Description

Current state

Next state

<functions>
<function>

<name>Agent_Function_1</name>

<description>...</description>

<currentState>00</currentState>

<nextState>01</nextState>
</function>

</functions>

Messages
Name

Description

Variables

<messages>
<message>

<name>Message_Name</name>

<description></description>
<variables>
<variable>

<type>int</type>

<name>firm_id</name>

<description>...</description>
</variable>
</variables>
</message>

</messages>

Extra features of FLAME
Simple C functions are re-usable blocks of

code.

Use messages for agent communication.

Agents are automatically activated (turns).

Function activation based on time schedules,
or event-based.

Message filtering based on agent/message
variables.

Message pre-sorting, randomization by FLAME

40

Tutorial 4:
Function conditions

Function conditions
Functions are activated based on conditions:

– Time-based: add a time condition

– Event-based: add a memory condition

 Important note:

– From every state, all possible branching
conditions must be mutually exclusive.

– From every state, there must be at least
one condition that is true (else the agent
reaches its end state).

<function>
<name>
<description>
<currentState>start_Person</currentState>
<nextState>end_Person</nextState>
<condition>

<lhs>
<value>a.age</value>

</lhs>
<op>GT</op>
<rhs>

<value>0</value>
</rhs>

</condition>
</function>

Function activation: memory conditions

<function>
<name>
<description>
<currentState>01</currentState>
<nextState>02</nextState>
<condition>

<time>
<period>yearly</period>
<phase>5</phase>
</time>

</condition>
</function>

<condition>
<time>
<period>yearly</period>

<phase>a.birthdate</phase>
</time>

</condition>

Time conditions can also refer to agent
memory variables:

Function activation: time conditions

Messages
Messages are input/output to functions

<function>
<name>Agent_function_1</name>

<description>...</description>

<currentState>00</currentState>

<nextState>01</nextState>

<inputs>

<input>

<messageName>Input_mesg</messageName>

</input>

</inputs>

</function>

Message loops
C: Messages are added to the message board

C: Agents are looping through the messages

Note: all messages are processed; filtering can
be done!

START_<MESSAGENAME>_MESSAGE_LOOP
<Messagename>_message->variables

FINISH_<MESSAGENAME>_MESSAGE_LOOP

add_<messagename>_message(var1,var2,...)

Households can selectively
read messages using filters.
• salary > 1000 and skill
level = 4

F

Message filters
XML: Messages can be filtered using filter

conditions on the input messages

Filter operators: EQ (==), NEQ (!=), LT (<), GT
(>), IN (arrays)

Use: value of a memory variable (OP) value of
a message variable.

Example:

ID == message ID

<filter>

<lhs><value>a.id</value><lhs>

<op>EQ</op>

<rhs><value>m.id</value></rhs>

</filter>

<input>
<messageName>Message_Name</messageName>

<filter>

<lhs>

<value>a.id</value>

</lhs>

<op>EQ</op>

<rhs>

<value>m.id</value>

</rhs>

</filter>

</input>

49

Tutorial 5:
Linking XML and C code

50

Linking XML to C

• FLAME generated header files included in the C source
code

• C source code files are included in the XML model

• C source code:

– Using memory variables: CAPITALIZED names

– All memory variables retain their values

– Looping over messages: FLAME message loop code

• Nested models: can be enabled/disabled in XML

Including Function Files
 Assume: each agent has its own functions file.

 XML: C source code is linked in by function files

 C: In C source code files, headers are included to
link to FLAME generated code:

<functionFiles>
<file>Source_code_file_1.c</file>
<file>Source_code_file_2.c</file>
</functionFiles>

#include "../header.h"
#include "../Agentname_agent_header.h"
#include "../my_library_header.h"

Message looping in C
C: Messages are added to the message board

C: Agents are looping through the messages

Note: by default all messages are processed;
however: filtering can be done!

START_message_name_MESSAGE_LOOP

 X = <message_name>_message−> msg_var1 ;

 Y = <message_name>_message−> msg_var2 ;

FINISH_message_name_MESSAGE_LOOP

add_<messagename>_message(var1,var2,...)

Using memory variables
C: Memory variables are capitalized in C to

retrieve and assign values:

C: Arrays and datatypes:
X = MY_ARRAY_VAR[i];

x = MY DATATYPE . var1;

y = MY DATATYPE . var2;

MY_VAR = 0 ;

int x = MY_VAR ;

54

Summary

• Simple C functions are re-usable blocks of code in the XML
model definition.

• Agent functions are automatically scheduled and activated
(by layers, conditions).

• Use messages for agent communication.

• Function activation based on time schedules, or event-
based (agent variables).

• Message filtering is based on agent or message variables.

• Message pre-sorting, randomization can be done by FLAME.

