* EURACE %

'\

* *
* 4 ok

e

Project no.
035086
Project acronym
EURACE
Project title
An Agent-Based softwar e platform for European economic policy design with heter ogeneous
interacting agents. new insightsfrom a bottom up approach to economic modelling and ssimulation

Instrument STREP

Thematic Priority IST FET PROACTIVE INITIATIVE “SIMULATING EMERGENT PROPRTIES IN
COMPLEX SYSTEMS”

Deliverablereference number and title
D1.1: X-Agent framework and softwar e environment for agent-based modelsin economics
Due date of deliverable:

Actual submission date:

Start date of project: Septembér2006 Duration: 36 months

Organisation name of lead contractor for this deliverable
University of Sheffield - USFD

Revision 3
10/09/07

Prgject co-funded by the European Commission within the Sixth Framewor k Programme (2002-2006)

Dissemination L evel

PU Public

PP Restricted to other programme participants (ineclgdche Commission Services)

RE Restricted to a group specified by the consortiinl{ding the Commission Services)
(6{0) Confidential, only for members of the consortiumc{uding the Commission Services)

Workpackage 1, Deliverable 1.1

Contents

Executive Summary

1

2

October 1, 2007

Introduction

Background

2.1 X-Machines
2.1.1 Transition Function
2.1.2 Memory and States

Design Decisions
3.1 Feature Identification.
3.2 System Description oL
3.3 Labour Market Case Study
3.4 Unified Modelling Framework
3.5 Handling Of Time
3.5.1 Communication
3.5.2 Updating Agents
3.6 Communication Networks
3.6.1 Agent-Environment Interaction
3.6.2 Agent-Agent Interaction
3.7 Simulation Output and Data Storage

Framework Implementation

4.1 XParser v i i e e e e e e e
4.1.1 Process Sequenceo

4.2 Framework Communication

4.3 X-Machine Agent Markup Modelling Language (XMML) . . .
4.3.1 Featuresof XMML
432 Data e
433 CLlanguage
4.3.4 Data Structures. oL
435 Array
4.3.6 XMML Components
4.3.7 Agents
4.3.8 Messageso

Model Creation

5.1 Data structures Lo Lo
5.2 Definition of XMML tags
5.3 Handling Variables in Agent Memory
5.4 Handling Messages
5.5 Handling Dynamic Arrays
5.6 Outputs Produced by the Xparser

10

11
11
11
12
21
21
22
23
25
25
25
26

27
27
28
28
31
31
32
32
33
33
33
34
34

Page 1/71

Workpackage 1, Deliverable 1.1

B

C

Understanding Economic Models: The C@QS Model

6.1
6.2

Version 1: Without the Mall Agent
Version 2: With the Mall Agent
6.2.1 Graphs

Building Eurace by Markets

7.1

7.2

The Labour Market Model
711 Agents.
7.1.2 Function Layout
7.1.3 Implementation
7.1.4 Results and Conclusions
The Asset Market Model
7.2.1 Agent Population.
7.2.2 Internal Dependencies

7.2.3 Implementation
724 Current Work

XMML Schema

CQTS Model

Labour Market Model

References

Glossary

October 1, 2007

38

. 1
S 1
. 1

44

oL 44
L 4T
L4
... 48
... 48
o049
o049
o049
o049
. ... 50

54
58
63
70

71

Page 2/71

Workpackage 1, Deliverable 1.1

List of Figures

O~ O UL i W N =

= e e e e = ©
SO R W N = O

17

18
19
20
21

22
23

24

Transition function L oL 9
X-machineagent oL 10
Firm state transition diagram 17
Household state transition diagram 17
Firm state transition diagram updated 18
Household state transition diagram updated 18
Layers of abstraction for the framework. 22
Labour market function dependencies 24
XParser USAge . . .« v v v v v e e e e e 27
Communication dependencies between functions 29
Syncing communication dependencies as synchronisation layers 30
Function dependency graph of CQS model version 1 40
Function dependency graph of CQS model version 2 41

Communication synchronisation layers of C@QS model version 2 42
Graph showing the relation of price, stock sold, and production 42
Graph showing the relation between average wage, price, pro-

duction, and the stock sold 00 43
Blackboard diagrams describing discussions on the labour
market model oL L oL 45
Function dependency of the labour market day by day 45
Function dependency graph of the labour market 46
Updated function dependency graph of the labour market . . 47
The communication sycnronisation layers of the labour mar-
ket model 48
Dotty diagram of household and firms. o1
Function dependency graph for the Financial Management
Role of the Household. 52
Function dependency graph for the Portfolio Selection Algo-
rithm of the Household. 53

October 1, 2007 Page 3/71

Workpackage 1, Deliverable 1.1

List of Tables

O~ O UL i W N =

— e e = = ©
B wWw N = O

Firm system states L L. 13
Firm input and output messages 13
Firm memory pre and post state transitions 14
Household functions 15
Firm functionso 0oL 19
Household functions 20
C fundamental data types. oL 32
Example of the employee data type. 33
Defining an array of predefined size. 33
Defining a dynamic array. 0. 33
Example of a Firm Agent. 34
Example of describing messages. 34
Sequence of events in the CQS model 39
Six step labour market algorithm.. 44

October 1, 2007 Page 4/71

Workpackage 1, Deliverable 1.1

Executive Summary

Agent-based modelling provides more innovative approaches to facilitating
research into the unresolved issues of complex systems. EURACE aims to
use agent-based modelling to explore the fields of economics to model the
European economy consequently providing insights into economic models,
behaviour of human societies, better computational models and improving
parallel computing paradigms. This document represents the Deliverable
1.1 which gives insights into the modelling framework, FLAME, and how it
has been applied to economic modelling.

An agent-based modelling framework, FLAME [6], previously developed
at the University of Sheffield, has been successfully used to model biolog-
ical systems and uncovered useful results. The framework, which uses X-
machines as the basic computational model is flexible enough to be applied
to various disciplines from biology to economics. Some of the features which
make it flexible have been described in the report:

e The framework uses XMML, X-machine markup modelling language,
to define agents and the communications between them.

e Various feature are provided by XMML and the framework which al-
lows the modellers to easily use the framework to design their own
models and test their outcomes.

e A few examples of its application to economic models have proven its
success and have been presented here.

e The unit at the University of Sheffield (USFD) has closely been work-
ing with the other economic partners in gathering the requirements
for system design of the economic models involved in EURACE. Doc-
uments produced by GREQAM! present abstract details of the eco-
nomic requirements the design of the final model should contain. All
of these issues have been targeted and translated into computational
modelling terms.

e USFD has also been working with the unit STFC? to produce effi-
cient models for deploying the agents onto parallel platforms produc-
ing platform independent and efficient parallel solutions to how various
economic models will be brought together and communication hazards

will be handled.

Various examples of economic models have been produced highlighting the
success of the framework and XMML. These include the labour market and
the credit market(work done at the Bielefeld working meeting (29/05/07
- 02/02/07)). Results of the labour market have been shown whereas the
credit market is currently under construction.

This report presents the framework and the flexibility of how the XMML
schema can be used to produce various models of the economy allowing

"Université de la Méditeranée.
2Rutherford Appleton Laboratories.

October 1, 2007 Page 5/71

Workpackage 1, Deliverable 1.1

different units to design and test their models and bring them together into
one simulation.

October 1, 2007 Page 6/71

Workpackage 1, Deliverable 1.1

1

Introduction

This document contains the details of efforts to implement economic models
as agent-based simulations.
The remainder of the document will be organised as follows:

Background - Overview of agent-based modelling and software sys-
tem specification;

Design Decisions - Contains implementation issues surrounding the
modelling requirements;

Framework Implementation - Contains implementation details of
the framework;

Model Creation - Contains details about how to implement models;

Understanding Economic Models: The C@S Model - Contains
details on implementing the CQTS model;

Building Eurace by Markets - Contains details on implementing
the labour and credit markets;

Appendix A — XMML Schema, which formally defines the XMML
language;

Appendix B — CQTS Model XMML, which formally defines the
CQ@TS model;

Appendix C — Labour Market Model XMML, which formally
defines the labour market model;

This report presents the work completed for deliverable D1.1 depicting
how the X-agent framework FLAME facilitates use of agent based modelling
in economics. This deliverable acts as part of the workpackage 1 which com-
prises of agent-based software engineering methodologies being laid down for
the project EURACE.

Keeping in accordance with Milestone 1.1, the report presents a defini-
tion of the XMML modelling language and how it is used for economics and
how agent-based models of economics can be written using it.

October 1, 2007 Page 7/71

Workpackage 1, Deliverable 1.1

2 Background

Agent-based modelling is a large research field allowing researchers to ex-
plore complex systems. Examples of which include ant and bee colonies,
biological cellular structures and human societies. The importance of this
approach is that it allows a bottom-up procedure, where the focus goes into
the individual interacting units which possess defined rules. Accompany-
ing these rules, when simulated, the individual interactions will produce an
emergent pattern of behaviour which can be observed of the system as whole.
This pattern can then be studied to test and understand the behaviour of
the complex system deducing if the rules introduced were justifiable or need
alteration. This helps deeper understanding of the interacting agents and
their behaviour which was otherwise not easily observable if these systems
were viewed as a whole.

The term ‘agent’, as Tesfatsion [14] describes, ‘refers broadly to a bundle
of data and behavioural methods representing an entity constituting part of
a computationally constructed world’. In economics, the definition of an
agent can although vary from representing a group of agents like a firm
composed of many individuals or an individual itself like a customer or a
worker.

Agent-based modelling takes the view that systems can be modelled
using many interacting objects. Objects, or agents, are self-contained au-
tonomous machines that can communicate with each other. To put a more
precise definition onto an agent, we suggest a formal computational model
based on specifying software systems called X-machines. XMML is the mod-
elling language used to represent these agents as X-machines and how they
will be communicating between each other.

2.1 X-Machines

The X-machine is a general computational model introduced by Eilenberg
[7] and later modified to represent more complex architectures at the Uni-
versity of Sheffield [8]. Contrary to Turing machines, X-machines have been
used to model complex systems and have enhanced their own capability to
more complex structures. One of the enhancements of the X-machine is the
communicating X-machine of which there are several approaches [1, 2]. The
approach used in XMML consists of a set of autonomous X-machines which
use messages to communicate with each other. There are no explicit input
or output components of these machines apart from this. Figure 2 depicts
the structure of an X-machine agent.

Stream X-machines, introduced by Laycock [12], are another extension
of the basic X-machine model and forms the basis for defining the agents in
XMML. The basic definition of an agent would thus, in accordance to the
computational model, contain the following components:

1. A finite set of internal states.

2. A set of transition functions that operate between states.

October 1, 2007 Page 8/71

Workpackage 1, Deliverable 1.1

\ f MEMORY

STATES
—
Message t1 Message t2

Figure 1: Transition function

3. An internal memory set. In practice, the memory would be a finite set
and can be structured in any way required.

4. A language for sending and receiving messages between other agents.

X:(E,F,Q,M,@,F,Q[],mo) (1)
where,
e Y are the set of input alphabets

e I are the set of output alphabets

Q@ denotes the set of states

M denotes the variables in the memory. This can have a possibility of

being infinite

® denotes the set of partial functions ¢ that map and input and mem-
ory variable to an output and a change on the memory variable. The
set o: XXM — T'x M

F' in the next state transition function, F': Q) X ¢ — @

qo is the initial state and mg in the initial memory of the machine.

2.1.1 Transition Function

The transition functions allow the agents to change the state in which they
are in, modifying their behaviour accordingly. These would require as inputs
their current state si, current memory value mi, and the possible arrival
of a message that the agent is able to read, ;. Depending on these three
values the agent can then change to another state so, updates the memory to
mg and optionally sends a message, t5. Figure 1 depicts how the transition
function works within the agent.

Some of the transition functions may not depend on the incoming mes-
sage. Thus the message would then be represented as:

Message = {0, < data >} (2)

October 1, 2007 Page 9/71

Workpackage 1, Deliverable 1.1

X-Machine Agent

Memory

N
e

out \

F2

Figure 2: X-machine agent

These agent transition functions may be expressed in terms of stochas-
tic rules, thus allowing the multi-agent systems to be termed as stochastic
systems.

2.1.2 Memory and States

The difference between the internal set of states and the internal memory set
allows for added flexibility when modelling systems. There can be agents
with one internal state and all the complexity defined in the memory or
equivalently, there could be agents with a trivial memory with the com-
plexity then bound up in a large state space. There are good examples
of choosing an appropriate balance between these two as this enables the
complexity of the models to be better managed.

October 1, 2007 Page 10/71

Workpackage 1, Deliverable 1.1

3 Design Decisions

After discussions with economists about an economic model for Europe,
partners at the Université de la Méditerranée (GREQAM) created a mod-
elling requirements and specifications document [16, 17]. This chapter de-
scribes the implementation issues surrounding these requirements/ specifi-
cations including formally specifying agents, transforming the specification
into a simulation and the parallel processing issues of running a simulation
on high performance parallel computers.

3.1 Feature Identification

The requirements document highlights the following issues for building high-
fidelity, high-resolution agent-based models as described by Pryor et al. 1998
[13]:

Identify actors.

Develop a set of operations that the actors perform.

Define the applicable operations in a logical sequence.

Identify and quantify the resources on-hand and remotely accessible
to the actors.

3.2 System Description

Specifying software behaviour have traditionally involved finite state ma-
chines which allow modelling a system in terms of its inputs and outputs.
More abstract system descriptions include UML which has already been
proposed as a way to design agent-based models [4, 3, 10, 19] but these
techniques lack precise descriptions needed for generating simulation code
and for testing. Testing a system specified as a finite state machine makes
it easier for the behaviour to be expressed as a graph and allow traversals of
all possible and impossible executions of the system 3. Conventional state
machines describe the state-dependent behaviour of a system in terms of
its inputs, but this fails to include the effect of data. X-machines are an
extension to conventional state machines that include the manipulation of
memory as part of the system behaviour, and thus are a suitable way to
specify agents. The advantages of this approach have been highlighted in
Section 2.1. Describing a system would thus include the following individual
stages for creating a model:

Identifying the system functions

Identify the states which impose some order of function execution

Identify the input messages and output messages

For each state identify the memory as the set of variables that are
accessed by outgoing and incoming transition functions

This is similar to branch traversal testing.

October 1, 2007 Page 11/71

Workpackage 1, Deliverable 1.1

3.3 Labour Market Case Study

A text based specification of the labour market was created by partners at
the University of Bielefeld [15], which defined two types of agent, Firms and
Households. After Discussions at the working meeting in Bielefeld (29 May
— 2 June 2007) the labour market algorithm can be summarised as follows:

1. Every month Firms calculate their production, including required work-
ers

2. Firms act accordingly and send out any vacancies

3. Households receive vacancies, rank them, and send job applications
4. Firms receive applications, rank them, and send job offers

5. Households receive job offers, then send a offer acceptance

6. Firms receive offer acceptance(s) then update their wage offer (depen-
dent on how many vacancies that are filled)

The sequence of operations described are meant to cover one working
day in the simulation.

Following the method for creating an X-machine model, the firm agent
system functions can start to be identified:

e (Calculate production

e Send vacancies

e Receive applications

e Rank applications

e Send job offers

e Receive offer acceptance(s)

e Update wage offer

Also the system states that impose some order of function execution can
start to be defined. This is achieved by associating transition functions with
a start state and an end state, hence the transition between states (the start
and finish state can be the same state), see Table 1. The next stage is to
identify the input and output messages associated with a function transition,
see Table 2. Finally identifying the pre and post memory of the transition
functions, see Table 3. The same method can be applied to the Household
agent, see Table 4.

October 1, 2007 Page 12/71

Workpackage 1, Deliverable 1.1

Start State H

Function

End State

producing

calculate production

prepare production

prepare production

send vacancies

get applications

get applications

receive an application

get applications

get applications

rank applications

applications ranked

applications ranked

send job offers

get offer acceptances

get offer acceptances

receive offer acceptances

get offer acceptances

get offer acceptances

update wage offer

producing

Table 1: Firm system states

‘ Start State ‘ Input ‘ Function H End State ‘ Output
producing day of calculate prepare
the month || production production
prepare send get vacancies
production vacancies applications
get job receive an get
applications | application || application applications
get rank applications
applications applications || ranked
applications send get offer job offers
ranked job offers acceptances
get offer offer receive offer || get offer
acceptances | acceptance || acceptance acceptances
get offer update producing
acceptances wage offer

October 1, 2007

Table 2: Firm input and output messages

Page 13/71

L00g ‘T 190120

‘ Start State ‘ My, ‘ Input H Function H End State ‘ M5t ‘ Output
producing day of month day of the || calculate prepare required_workers =
to act = month = z || production production | calc_production()
prepare required_workers > send get vacancies
production | current_workers vacancies applications
get job receive get
applications application || applications || applications
get rank applications
applications applications || ranked
applications send get offer job offers
ranked job offers acceptances
get offer offer receive offer || get offer current_workers—++
acceptances acceptance || acceptances || acceptances
get offer update producing wage_offer =
acceptances wage offer update_wage_offer()

1L/%1 98eg

Table 3: Firm memory pre and post state transitions

T'T [qeIdAT[a(T ‘T o8espedsIopn

L00g ‘T 190120

1L/G1 98eg

Start State ‘ My, ‘ Input H Function H End State ‘ M5t ‘ Output
unemployed vacancy || receive vacancies || unemployed

unemployed send applications || get offers applications

get offers offer accept offer employed offer acceptance

Table 4: Household functions

T'T [qeIdAT[a(T ‘T o8espedsIopn

Workpackage 1, Deliverable 1.1

For both the Firm and the Household a state transition diagram can be
produced, see Figures 3 and 4. Immediately we can see that there is a missing
state transition in the Household agent from employed to unemployed. To
make this transition you would expect a redundancy message to arrive for the
Household. This can be added to the state transitions as a function called
'made redundant’ with start state ’employed’, input 'redundancy’, and end
state 'unemployed’. The redundancy message must come from the employees
firm, so we need to add this to the Firm agent. From the Firm state 'prepare
production’ there is only one transition function when 'required workers >
current workers’. But there are two other instances when both values are
equal or required workers is less than the current number of workers. In
this case the firm would need to sack the appropriate number and send out
redundancy messages. The final model is described by the Tables 5 and 6
with the state transition diagrams in Figures 5 and 6.

In some states where messages are being received, ’get_applications’,
‘get_offer_acceptance’, and ’get_offers’, there comes a point when the agent
needs to stop waiting for incoming messages and perform some operation,
like ranking. For the X-machine model any state transition requires an in-
coming message or the memory being in a required state. The memory state
could include a count for the number of messages read and stop after a cer-
tain number. Except there could be the possibility of no incoming messages
and therefore never reach the limiting value. Or a memory value could in-
clude an internal clock ticker and the agent waits for a certain amount of
clock ticks, except there would need to be a mechanism to advance the clock
tick. For a message event approach an incoming message could come from
a central control agent that knows that there are no more messages to be
read. This could be achieved by all agents that have finished sending a cer-
tain type of message, sending a message to the control agent. The control
agent has a list of all agents that send the type of message and knows when
they have all finished, then sends a message to agents that read in that type
of message to say that no more messages are being sent. A final concept is
that of a null message, or one that states that there are no more messages
to read. This has been defined by the message types ’vacancies_finished’,
"applications_finished’, and ’offer_acceptance_finished’ in the model.

The need for a null message is tied to the idea that the economic models
are defined by a sequence of actions that must take place in one iteration, or
working day. For example the labour market is run completely once every
day. Therefore every agent needs to have available all incoming messages for
the sequence to complete properly. Another view is that agents should not
wait for all incoming messages as communication should be continuous, as
should the labour market, as real labour markets do not start and complete
on the same working day usually but is a continuous process over every
working day. This strategy though could involve asynchronous updates,
as described in Subsection 3.5 which would not be easily compatible with
parallel processing.

October 1, 2007 Page 16/71

Workpackage 1, Deliverable 1.1

calculate production

v

producing (prepare production)
A

send vacancies
update wage offer

receive applications

> (get applications)]
[get offer acceptances]

S |
receive offer acceptances rank applications

send job offers

—(ranked applicalions)e

Figure 3: Firm state transition diagram

employed —| unemployed l

N

add_to_vacancy_list

send_applications

A4

' get_offers no_offers

accept_offer

Figure 4: Household state transition diagram

October 1, 2007 Page 17/71

Workpackage 1, Deliverable 1.1

calc_production

v

(prepare_production
same_workers L

less_workers

update_wage_offer

9(get_offer_acceptance ngt_applications

I rank_application_list

more_workers

add_to_workers add_to_application_list

Figure 5: Firm state transition diagram updated

made_redundant

unemployed

add_to_vacancy_list

employed

send_applications

no_offers

get_offers
accept_offer

Figure 6: Household state transition diagram updated

October 1, 2007 Page 18/71

L00g ‘T 190120

1L/61 9Seg

State My, ‘ Input H Function ‘ State ‘ M5t ‘ Output
producing day_to_act = z day_of_month(z) calc_production prepare_prod required_workers =
calc_production()
prepare_prod required_workers same_workers producing
current_workers
prepare_prod required_workers less_workers producing current_workers redundancies
< =
current_workers required_workers
prepare_prod required_workers more_workers get_applications vacancies
>
current_workers
get_applications application add_to_ get_applications
application_list
get_applications applications_finished || rank_application_list || get_offer_accept job_offers

get_offer_accept

offer_accept

add_to_workers

get_offer_accept

current_workers—+-+

get_offer_accept

offer_accept_finished

update_wage_offer

producing

Table 5: Firm functions

T'T [qeIdAT[a(T ‘T o8espedsIopn

L00g ‘T 190120

‘ State ‘ My, | Input H Function H State ‘ Mpost ‘ Output
employed redundancy made_redundant unemployed

unemployed vacancy add_to_vacancy_list || unemployed

unemployed vacancies_finished || send_applications get_offers applications
get_offers offer accept _offer employed offer_acceptance
get_offers offers_finished no_offers unemployed

1./0% 9Seg

Table 6: Household functions

T'T [qeIdAT[a(T ‘T o8espedsIopn

Workpackage 1, Deliverable 1.1

3.4 Unified Modelling Framework

By creating a unified modelling framework partners on the project can use
their expertise to create models of their own particular economic markets.
These markets should then be able to be combined to create a macroscopic
model of the European economy in a synergetic way. The unified mod-
elling framework should also enable the parallel processing of a simulation
independently from the model and its modellers.

Abstraction layers are very important as a way of hiding implementa-
tion details of a particular set of functionalities. Discussions with the the
Rutherford Appleton Laboratory (STFC) have produced the following three
layered approach. First the model layer that modellers interact with and
have knowledge about. The perception at this level is of a collection of
agents, that run through operations in order, and communicate. The sec-
ond layer, the framework layer, is the engine of the simulation. It handles
the reading in of agent start states, allocates agents to processors, runs agent
operations in order, and sends agent messages. The third and final layer is
the communication layer and handles agents receiving messages. Usually
agents only read a relevant subset of all the messages sent, depending on
various factors, and it is this layer that filters and subdivides the available

messages. A block diagram of this approach has been presented in Figure
7.

3.5 Handling Of Time

Computer simulations operate on two notions of time:

e The advancement of processing time

e The advancement of simulation time

The processing time is the program progress and simulation time depends
on program progress. For agent-based simulations processing time is the
processing of agents and the handling of communication. Simulation time
is advanced between periods of processing, for example when every agent is
updated and all communication has reached its destination.

Deciding which agent to run and when to process/update it is a major
issue.

For some theoretical results it can make a major difference in the out-
come. The most dramatic example is the Game of Life where synchronous
updates create patterns and structures capable of computation, but under
an asynchronous scheme the model world quickly becomes lifeless. Another
example comes from game theory where synchronous turns of players can
evolve oscillation of states while asynchronous player turns quickly find a
stable equilibrium [9].

Particularly for communicating agents is when communication completes,
which is when messages are sent when are they available to be received. This
can involve two kinds of update strategies - synchronous, at the same time,
and asynchronous, not at the same time. These updates can be defined in
the context of communication as follows:

October 1, 2007 Page 21/71

Workpackage 1, Deliverable 1.1

Model Layer

- Agent

- Agent operations

- Logical Sequence of operations

- Communication networks (which agents can read other agents messages)

Framework Layer

- Spread of agents on processor(s)

- Calling of functions on agents in order
- Agent message transmission

- Input and output to files

Communication Layer

- Agent message delivery filtering

Figure 7: Layers of abstraction for the framework.

e Synchronous:

— Communication only completes after every agent is updated once.

— Order of agent updates does not matter.
e Asynchronous:

— Communication completes after every agent is updated.

— Order of agent updates matters.

3.5.1 Communication

Communication is very important when dealing with parallel processing of
simulations. It can act as a major bottleneck that can slow down simulation
times. Discussions with partners at STFC suggested that it is the starting
up and ending of communication between processors that is the major factor
and not the amount of data being sent [11]. This suggests that the least
amount of communication synchronisation points, or completes, the better.
It also implies that it is better to send as much information as possible in a
single communication than to send each piece of communication individually.

Deciding which computer platform to be used should not affect the re-
sults of a simulation. Processing and communication time should affect
simulation time and not in the other direction. So the framework should
be designed to be platform independent. This becomes important when

October 1, 2007 Page 22/71

Workpackage 1, Deliverable 1.1

handling agent updating and communication. In a simulation, agent com-
munication should not be affected by the number of processors used nor
the physical networks connecting them #. Summarising the points to be
considered:

It should not matter that an agent is not on the same computing
node. This requires all agent interaction is achieved via contactless com-
munication via messages. Contactless here refers to the inability to directly
poll or access another agents memory values, as this is not possible if the
agents are on a different computing nodes.

Any communication sent should be available for when it is needed
to be read. This means operations that receive messages can only be run
when messages have arrived. The physical bandwidth of the communication
hardware used to run a simulation will not affect the results.

3.5.2 Updating Agents

There are two ways an agent can be updated/processed. Updating can be
based on processing time information, called incremental based, or rely on
incoming communication, called event based. Though incremental based
self updating can include incoming communication, and event based could
include an incoming timed event.

Because agents only communicate via messages, they can be updated at
any time if any messages they need to read have arrived. So the only thing
affecting the updating of agents is the communication dependencies, i.e. we
can’t update this agent until other agents have been updated. By using the
state machine description to calculate the possible order of the functions,
which shall be called internal dependencies, and the communication input
and output between different functions, the communication dependencies, a
function dependence graph can be created. A paper [18] from 2002 uses this
dependence analysis technique to aid automated test case generation, which
could also aid testing of models in the framework. Figure 8 shows a depen-
dency graph for the labour market of all the actions that can happen in one
day, i.e. after a date event happens and waiting for the next one. From the
communication dependencies defined in the graph, one can add stages where
communication must complete before the corresponding function requiring
the input is processed. One can also assert that an agent can be updated
until it is waiting for incoming communication and can only be updated
again till after the corresponding communication completes. The graph also
shows what agents need updated when, and depending what state they are
in, the function that is executed.

“The speed of the cables or buses used for connection between processors responsible
for carrying agent communication

October 1, 2007 Page 23/71

Workpackage 1, Deliverable 1.1

Firm Function Dependencies

Household Function Dependencies

Csamefworkers) (morefworkers) Qessfworkers)
-
1

--—

e memmmm e b e Iedundaney L
Communication Completes ! !
lvacancies 1
1 - made_redundant
1
1
1 .
_________________ add_to_vacancy_list
- - rank_vacancies
lapplications
___ e

rank_application_list —_—— -

liob_offers
1

FECEEEEEPPEPEPEES EEEPEEEEPEPEPERTER] PEREEE
e ———
=== -{ accept_offer } { no_offers }
:offerfacceptance
1
1

update_wage_offer

Figure 8: Labour market function dependencies

October 1, 2007 Page 24/71

Workpackage 1, Deliverable 1.1

3.6 Communication Networks

Parallel computation is easily handled when agents are communicating via
messages. The use of the idea of agent-agent and agent-environment inter-
actions is an abstraction above the fundamentals. The only availability for
agents communication are sending messages and receiving messages.

3.6.1 Agent-Environment Interaction

The idea of an ‘environment’ can be something that holds information that
could possibly change, which can be embodied as an agent itself. Examples
of environments in agent-based models can be:

e Land that grows crops (the ground cover environment).
e Chemical signals (the chemical environment).

e Newspaper business sections (the economic environment).

FLAME has been used for modelling biological systems, especially bi-
ological cells, where external solvers are needed to solve chemical diffusion
and the physical movement of the cells. It is functions in these ‘environment’
agents that can be used to call external solvers, and pass back information
back to the cells.

3.6.2 Agent-Agent Interaction

Agent-agent interaction is when one agent sends a message and another reads
it. The agent reading messages can filter messages depending on specified
variables. Examples of which include:

e Its ‘id’ (direct).
e Its ‘region’ (local area interaction).

Agents do not need to hold a list of pointers to other agents to represent
their local neighbourhood. This can be achieved by the following ways:

e Agents having the same region number.
e Agents having a trade group number.
e Agents having a location and filtering messages via a distance metric.

Few instances, where the buyer has a preferred seller, such information
would be held within the agent memory. Networks in agent based models
are fully defined with agents, not a top down global view.

October 1, 2007 Page 25/71

Workpackage 1, Deliverable 1.1

3.7 Simulation Output and Data Storage

Data storage is an important issue. Currently data is being held in XML
format for ease of access but this presents problems with increasingly large
file sizes. Other options to resolve this issue are being considered:

e Common Data Format (CDF) for the storage and manipulation of
multi-dimensional data sets

e Database which would also easier extraction of specific data

e XML alternatives: YAML, JSON, SDL

Discussions and experiments with these and other file formats are cur-
rently being performed by Sheffield and STFC.

October 1, 2007 Page 26/71

Workpackage 1, Deliverable 1.1

4 Framework Implementation

Initial work on implementation had already been undertaken by Simon
Coakley as part of his Ph.D. This involved creating a parser program that
takes a model description as an input and produces a runnable simulation
program, either in serial or parallel. Model descriptions are written in a file
format called XMML which is a specific tag defined XML file. The XML
format provides a structure for data that computers and humans can un-
derstand. A model description file allows metadata about a model to be
used to direct source code creation (via a parser program), especially for
parallel code that modellers do not need to encounter. It can also be used
to direct testing efforts and produce diagrams of a model that aid in its
understanding.

4.1 Xparser

The Xparser is the name of the program that reads XMML model files and
produces simulation program code, see Figure 9. Additional features that
have been added since the project started include:

e Function dependencies — agent functions can now be ordered in such a
way that the simulation program can execute them at the best possible
moment (which is calculated), and allows for future use of threading
techniques.

e Template engine — the logic behind the generated simulation code has
been transfered to template files so that collaboration between partners
is easier.

e Dynamic arrays for agent memory — the ability to have dynamic sized
arrays in agent memory has been added (although movement of agents
on a parallel machine used for load balancing has yet to be imple-
mented).

The Xparser also has an XML reader to read the XMML model descrip-
tions, and also generates graphs of the function dependencies for analysis.

XMML

xparser Simulations
file

Figure 9: Xparser usage

The Xparser is completely written in C with the use of standard libraries
only. This was so that the program could be deployed on any platform (with
a C compiler) simply and easily. Because most of the logic is held in the
simulation template files it is viable to create a program in any language or
use additional libraries that would do the same job as the Xparser.

October 1, 2007 Page 27/71

Workpackage 1, Deliverable 1.1

4.1.1 Process Sequence

Agent functionality is defined by its functions. Functions change the agent
state and drive a simulation forward. The sequence that these functions are
run is determined by their dependency on each other, defined in the model
XMML. Dependencies are either communication, dependent on messages,
or internal, dependent on agent internal memory.

It is possible to construct a dependency graph (a directed acyclic graph)
to show the sequence of events that happen in a simulation. Whenever a
communication dependency occurs, in parallel, this requires a synchronisa-
tion block between the nodes so that messages arrive in time to meet the
dependency. These synchronisation blocks are a major time bottle neck and
so the fewer there are the more efficient the simulation. By traversing a
dependency graph it is possible to calculate the most efficient time to run
functions and where best to place synchronisation blocks.

Creating the function dependency graph currently uses a simple algo-
rithm. It finds functions with no dependencies on it, assigns them a layer,
removes them from the graph, and reruns the algorithm.

Figure 10 shows eight functions with dependencies. All are communica-
tion (denoted with a ‘C’) except the dependency of Function 2 on Function
5 which is internal (denoted with an ‘I’). Because internal dependencies do
not need a communication synchronisation block we can organise the syn-
chronisation blocks in such a way that we need the least amount of them.
An example of this strategy is the organisation of the functions from Figure
10 into layers separated by synchronisation blocks in Figure 11.

4.2 Framework Communication

The usual attribute that separates agent-based models from other modelling
techniques (like differential equations) is the use of space. Agents have a
location attribute that places them in space in relation to other agents. To
create new results from this added dimension of space, communication is
usually restricted to a distance metric, so that information is kept localised.
This knowledge can be used to direct efficient communication in a model
implementation.

Currently to efficiently handle messages with respect to localised com-
munication: The current implementation of the framework is based around
the idea of space as a Cartesian scale in 1, 2 or 3 dimensions, with:

e All agents defined with a Cartesian location
e All messages are defined with originating Cartesian location and range

e Agent space is partitioned along Cartesian lines

In this way when a message is sent by an agent, the message can be
defined as originating from the agent location and can only be read by agents
with location that is defined within the message range. To aid efficiency
messages are only sent to partitions in agent space that include agents within
the message range. After discussions with members of the STFC unit about

October 1, 2007 Page 28/71

Workpackage 1, Deliverable 1.1

| C
/\ /\
C C
/\ /\
C
/\
‘ Function_8 ’

Figure 10: Communication dependencies between functions

October 1, 2007 Page 29/71

Workpackage 1, Deliverable 1.1

C

Function_2

Function_6 ‘ Function_3 ’
C C

Function_7 ‘ Function_4 ’
C Cc

‘ Function_8 ’

Figure 11: Syncing communication dependencies as synchronisation layers

October 1, 2007 Page 30/71

Workpackage 1, Deliverable 1.1

parallel communication in HPCs the filtering of messages that are to be
sent to different nodes is not required. Firstly that filtering of messages is
done twice, when messages are sent between nodes, and when agents try
and read incoming messages. Secondly that the filtering of messages before
they are sent between nodes is unnecessary. This is because the time cost
of sending messages between nodes is more weighted on the opening and
closing of communication and less on the actual amount of data that is sent
[11], this iterates the importance of keeping communication synchronisation
blocks to a minimum. Therefore it is more efficient to send all out going
communication to all nodes. This then shifts all efficiency efforts onto the
filtering of messages for agents to read. This strategy is mentioned in Section
3.4.

Also in efforts to make the framework more generic the idea of space
should not be restricted by a Cartesian scale, or in fact any distance scale.
This is because agent space might be defined as groupings, for example
NUTS-2 regions.

4.3 X-Machine Agent Markup Modelling Language (XMML)

A description language for agent-based simulations, XMML has been pre-
sented here. XMML is orientated towards representing agent-based mod-
els as formalised abstract state machines, particularly communicating X-
machines. The motivation was to provide a formalised framework to en-
hance creating and testing of agent-based models and also provide innate
parallel processing capabilities.

4.3.1 Features of XMML

There are a number of factors which make XMML unique to achieve its
research purposes. A few have been listed below:

e XMML is not restricted by research area.
e [t is not restricted by any grid or location based structure.

¢ Communication is not restricted between agents, but mechanisms are
available to efficiently filter incoming messages.

e Agents are updated at the most efficient time and in parallel (if avail-
able)

XMML is meant to aid agent-based modellers in developing more for-
malised models that are easier to create, test, share, and be parallel pro-
cessable without additional work. The definition of the model description
language here does not specify how to parse the model description into a
simulation program but defines what is required and how the simulation is
advanced.

October 1, 2007 Page 31/71

Workpackage 1, Deliverable 1.1

4.3.2 Data

Variables represent the data that is possessed by the agent in their memory
and the messages they send or receive. While executing a simulation pro-
gram the details of this data needs to be known in advance. The advantage
of this approach are that data structures and algorithms that handle data,
especially in parallel, can be automatically generated:

e Creating data structures for agents and messages

Creating functions that access agent memory

Creating functions that interact with messages

Creating functions that handle input and output to files

Creating parallel algorithms that handle data between nodes

Variables contain a data type and a name. Data types are used to assign
storage for the variable and define the type of data that will be held in
that location. Variable names are used to reference and alter the data if
needed. The following XML represents a variable of type float and named
temperature.

<var>

<type>float</type>
<name>temperature</name>

</var>

4.3.3 C Language

The current XMML to simulation code parser is written in the C program-
ming language, therefore allowing C data types to be used. Examples of
these have been given in Table 7.

‘ Type ‘ Description

‘ Usual Byte Size ‘

Example Usage

int Integer number 2 bytes int count;
count = 5;
float A single-precision floating | 4 bytes float temp;
point value temp = 6.2;
double | A double-precision floating | 8 bytes double sun_temp;
point value sun_temp =
13600000.0;
char Character 1 byte char letter;
letter= ‘a’;

Table 7: C fundamental data types.

October 1, 2007

Page 32/71

Workpackage 1, Deliverable 1.1

<datatype>

<name>employee< /name>

<desc>Used to hold employee information</desc>
<var><type>int</type><name>id</name></var>
<var><type>float</type><name>wage</name>< /var>
< /datatype>

Table 8: Example of the employee data type.

4.3.4 Data Structures

To facilitate more structured data representation, new custom data types
can also be created. These custom data types can allow C data types as
well, and they can be referred to by their own user defined names. Table 8
gives an example of a custom data type called employee which holds an ‘id’
of type int and a ‘wage’ of type float.

The <desc> </desc> tags can be used to allows users to describe the
data type which can later be extracted to be used for description in the
documentation. These custom data types can now be used in the same way
as the C data types.

4.3.5 Array

Variables can also be defined as a list which can also be represented as an
array. The array can either be static, with predefined size, or dynamic,
allowing its size to change. To define a static array, use the C syntax which
is to place square brackets after the variable name that contains the array
size. So for a list of six variables of type float called wage, the definition
would be (Table 9):

| <var><type>float</type><name>wage[6]< /name>< /var> |

Table 9: Defining an array of predefined size.

Dynamic arrays have their own special data type provided by the XMML.
For any data type name just add ‘_array’ at the end. Therefore to change
the static array above to a dynamic array, take away the square brackets
and size and add ‘_array’ to the data type name (Table 10):

‘ <var><type>float_array</type><name>wage</name>< /var> ‘

Table 10: Defining a dynamic array.

4.3.6 XMML Components

XMML components are the representation of how models are described in
its specification. The description comprises of the agents involved, the agent
characteristics and the messages being used to communicate among the
agents.

October 1, 2007 Page 33/71

Workpackage 1, Deliverable 1.1

<I'— — % % % % % %% X-machine Agent - Firm = & % % % % % % % % —— >
<xmachine>

<name>Firm< /name>

- Variables— - — - — — — — — — —— >

<! — — All variables used by Firm are declared

here to allocate them in memory —— >

<memory >
<var><type>int</type><name>id</name>< /var>
<var><type>double</type><name>value</name></var>
</memory>

< ——— Defining functions — — — — — — — >
<functions>

<function><name>Firm_1</name> < /function>
<function><name>Firm_3</name> < /function>

< /functions>

</xmachine>

Table 11: Example of a Firm Agent.

<messages>

<! — ——Message for stock of the firm— — — — — >
<message>

<name>firm_stock</name>

<note>This message lets the people know how much stock
the firm they are buying from has left.</note>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>stock</name>< /var>
< /message>

< /messages>

Table 12: Example of describing messages.

4.3.7 Agents

Every agent is a X-machine. This depicts that the agent would thus contain
a set of memory variables which it can update during its functions. The
agent would also have a set of functions it can perform. The actual function
definition is not part of XMML component and is defined separately in a C
file. Table 11 gives an example of a firm agent.

4.3.8 Messages

Messages are used to communicate between the agents. All messages are
enclosed in the <messages> </messages> tag and every message structure
is defined seperately. An example has been shown in Table 12.

October 1, 2007 Page 34/71

Workpackage 1, Deliverable 1.1

5 Model Creation

5.1 Data structures

From the definitions in model XMML data structures can be created for
agent memory and message memory.

Agent and message memory is made up of variables of certain data types.
These can be:

e C fundamental data types - int, float, double, char (Table 7).
e Abstract data types made up of more than one C data type.
e Static arrays of C data types and abstract data types.

e Dynamic arrays of C data types and abstract data types.

Dynamic arrays are a built-in feature of the framework (for sending messages
in parallel the size of the array is needed). For any data type just add ‘_array’
to the end, and access it via the following functions:

e datatype_array * my_array = init_datatype_array();

For initialising the array.

add_datatype(my_array, value);

For adding an element to the array.

e remove_datatype(my_array, index);
For removing element at the specified index.
e my_array->size;

for returning the length of the array.

free_datatype_array (my_array);

For freeing the array.

5.2 Definition of XMML tags

The model description is given in the XML file using XMML tags which have
been described previously. These tags are used by the xparser to recognise
the agent memory, the sort of variables being used and the functions they
can perform.

5.3 Handling Variables in Agent Memory

The xparser offers a few functions which can be used to access the variables
in the agent memory.

e set_variablename(value)

The set function can be called with in the agent function to change the
value of the variable in the memory. The following brackets contain the
value to be replaced with.

October 1, 2007 Page 35/71

Workpackage 1, Deliverable 1.1

e x=get_variablename()
The get function can be called within the agent function and gets the value
of the variable wanted and saves it to the local = value.
5.4 Handling Messages

e add_messagename_message(varl, var2,...)

To add the message onto the message board. Varl, var2 symbolize the value
of the variables that the message carries.

e messagename_message=get_first_messagename_message()
The local variable gets the first message to traverse through the message.
e messagename._message->varl
The above command allows you to get the value of var! from the message.
e messagename_message = get_next_messagename_message(messagename_message);

The above command allows the loop to move onto the next message on the
board to read through. This would be used with a while loop until it returns
a null.

5.5 Handling Dynamic Arrays

The framework allows dynamic arrays to be used within the memory of the
agent. This is useful when the agent needs to maintain a list of a continually
growing nature of variables.

e int_array * Agents = init_int_array()
The above command initializes the dynamic array.
e xmachine_memory_agentname * xmemory = current_xmachine->xmachine_agentname;

To access the memory the xmemory pointer needs to be used with the current
xmachine to point to the xmachine being accessed. The pointer would be of
the type of the agent being accessed.

e reset_int_array(xmemory->dynamicvariablename);

When accessing the dynamic variable array we can use the reset to reset the
array.

e add_int(xmemory->dynamicvariablename, messagename_message->varl);

To add to the dynamic array list use the above command with the name of
the array given first and the value after the comma.

e xmemory->dynamicvariablename->array|value]

Values in the dynamic array can be accessed similar to the way elements in
an array would be accessed.

October 1, 2007 Page 36/71

Workpackage 1, Deliverable 1.1

e xmemory->dynamicvariablename->size

The size can be used to return the value of the size of the array. This would
be changing continually as it is not fixed.

e free_int_array(agents);

To free the list of the agents used.

5.6 Outputs Produced by the Xparser

The Xparser produces simulation source code files, a compilation script,
and a documentation options file. Also produced are two graphs that show
function dependencies (see Figures 12, 13 for examples) and function order
with communication layers (see Figure 14 for an example).

October 1, 2007 Page 37/71

Workpackage 1, Deliverable 1.1

6 Understanding Economic Models: The CQS Model

The first effort to create an economic model centred around the CQS project
with papers in progress provided by the Ancona unit [5]. The model de-
scribes a sequential economy populated with large numbers of firms and
workers/consumers who partake on markets for homogeneous non-storable
consumption goods and labour services.

Newly introduced into the model was the idea of locality, at the heart
of parallelising efforts. Where agents were given a location on a two di-
mensional continuous plane. The distance between agents in this Cartesian
space affected if they could communicate with each other.

6.1 Version 1: Without the Mall Agent

From the paper describing the CQ@QS model, two agents Firm and Person
were implemented. Table 13 shows the relation between the event sequence
described in the paper and the order of the agent functions. The importance
of this version is that only one agent function is used when firms hire workers
and persons buy goods. This is achievable only because these functions
are run sequentially, and are therefore not parallelable. They depend on
messages sent by the running of the function on other agents, and is therefore
a self-dependency. The means the function needs to be run one after the
other with messages sent available immediately to the consequent function
run on other agents. The self-dependency is shown in the functions 'Firm_3’
and 'Person_5" in the function dependency diagram in Figure 12.

6.2 Version 2: With the Mall Agent

The second version included a new agent type (defined by the XMML in
Appendix B). The mall agent was introduced to parallelise the labour and
goods markets and also to make the markets fairer as the cheapest workers
and goods would be evenly distributed rather than first come take everything
approach of version one. It also added locality of agents and the feature that
firms and persons had to choose which mall to go to for the labour market
and the goods market. The function dependency graph of this model is
shown in Figure 13. Figure 14 shows the communication synchronisation
points between the different functions of the agents. The diagonal lines
represent the points at which all functions prior to it would need to be
finished for the simulation to proceed.

6.2.1 Graphs

The graph in Figure 15 represents the pattern of behaviour between the
goods sold, price and the production. when the price increase the goods
sold reduces which causes a reduction in the production. Simultaneously if
the price is low, more goods are sold causing more production to take place.

Graph 16 shows the relation of wages, price, production and goods sold.
The price of the goods denotes a price inflation when the price has increased
in the previous iteration. With an increase in price the wage of the workers

October 1, 2007 Page 38/71

Workpackage 1, Deliverable 1.1

Function | Event | Firm Agent
(model) | (paper)

Person Agent

1 1,2,3 Checks financial viability
Calculates production
Calculates labour required
Send price inflation message

Does nothing

(from job application messages
and send hired messages)

2 4 Does nothing Calculate total price inflation
(from price inflation messages)
Calculate new wage
Send job application messages
3 b} Hire workers Does nothing

(from stock messages)
Calculate revenue
Calculate profits

6
4 Ta Calculate wage bill Check hired messages
Calculate goods price (update status if hired)
(send price message)
Calculate produced goods
(send stock amount message)

b} 7b Does nothing Spend income on goods
(using firms price and stock
messages, send updated stock
messages if buying)

6 8 Calculate stock sold Add wage to income

(for next iteration)

Table 13: Sequence of events in the CQS model

October 1, 2007

Page 39/71

Workpackage 1, Deliverable 1.1

Firm_1
(58 lines)

idepends on priceinflation_message>

Person_2
(103 lines)

i<depends on application_message>

Firm_3

(98 lines) depends on employed_message>

<depends on internal>

Firm_4
(42 lines) <depends on employed_messa
<depends on goods_price_messagesepends on firm_stock_message >F2%r7i?12g;1

Person_5

<depends on firm_stock_messad eﬁzg lines)

depends on firm_stock_message>

<depends on firm_stock_messagexk<depends on internal)<depends on internal>

Firm_6 Person_6
(50 lines) (5 lines)

Figure 12: Function dependency graph of CQS model version 1

October 1, 2007 Page 40/71

Workpackage 1, Deliverable 1.1

Spread_awareness
(4 lines)

<depends on mall_location:

Person_1
(77 lines)

<depends on mall_location>

L Firm_1
(83 lines)

Job_market
(87 lines)

<depends on priceinflation>
<depends on vacancy>
<depends on applicatiop>

<depends on empl:gidepends on employed>

Person_2
(32 lines)

Firm_3
(73 lines)

Goods_marke!
(113 lines)

<depends on consumerspeﬁbpends on firm_stock_prict

Person_4
(22 lines)

<depends on consumer%epends on firm_stock>

Firm_4
(50 lines)

Figure 13: Function dependency graph of C@QS model version 2

October 1, 2007

Page 41/71

Workpackage 1, Deliverable 1.1

Spread_awareness
(40 Tines)

Firm_1
(40 Tines)

Person_1l
(40 Tines)

Job_market
(40 Tines)

Person_2 Firm_3
(40 Tines) (40 Tines)

Goods_market
(40 Tines)

Person_4 Firm_4
(40 Tines) (40 T1ines)

Figure 14: Communication synchronisation layers of CQS model version 2

70 T T T T
Price —+—
W Sold
| Production --->---
w | '
\
| |
f |
50 “ “ T
I |
rl (-
A / | [
/1 | ++ \‘ ‘ 5“
a0 | £ f ™ | ‘ T
Anaa A2 m
[V ‘ || | f | ||
T | e‘ | | T H H | | “ T
W AR L)
30 (IS X%—o—# -+ + —
| ¥ | A FRRRRR /| +
| | / [g ———— | /\
7 | f 4 | /|
N oA | | |
b A | IRE
/U | | A
/ I |
/ \
w0} | W
IS

I\ N SRk
é@ff ook e KK oot ¥
HIHRRK ; ‘,* IR (¥ 1@9& % *%, Yo e WX : K * ;j foss
0

0 20 40 60 80 100

Time

Figure 15: Graph showing the relation of price, stock sold, and production

October 1, 2007 Page 42/71

Workpackage 1, Deliverable 1.1

50 T T T T
ave wage —+—
ave price <
45 ave production ---*--- |
avesold &
unemployment
40 |- vacancies i
35 | i
30 ‘ > 4
25) < ‘ < i
20 |- < E
Nl //\ e P / %W*\ww]
10 . B

Time

Figure 16: Graph showing the relation between average wage, price, pro-
duction, and the stock sold

increase as they demand higher wages. The goods sold and the production
seem to have a mirror relation between them. When goods sold increase
production increases and vice versa. The interesting facet about this rela-
tion is that the two seem to reach an equilibrium even if the are greater
fluctuations in the wage and the price.

October 1, 2007 Page 43/71

Workpackage 1, Deliverable 1.1

7 Building Eurace by Markets

7.1 The Labour Market Model

The labour market was initially described in a document by the Universitaet
Bielefeld unit. This describes a matching algorithm between job seekers and
vacancies in a six step approach. Initially each step was assigned per day in
a simulation.

‘ Step ‘ Firm ‘ Household ‘
1 Send Vacancies
2 Read Vacancies

3 Read applications, rank, and
send job offers
4 Read job offers,rank and send
job acceptance

5 Read job acceptances
6 Update wage offer Update reservation wage

Table 14: Six step labour market algorithm.

At the Bielefeld working meeting the following were discussed:
e Communication between agents happen between agent functions:

— One agent function sends a messages, and another agent function
reads the message.

e When one function depends on a message sent from another function
this is called a communication function dependency.

e When one function depends on the outcome of another functions within
in the same agent this is called an internal function dependency.

e Function dependencies are not allowed to happen across time steps
(days).

— Because each day is taken to be a separate simulation run (this
removes many problems).

As a group task the function dependencies of agent functions where
discussed and written on a black board. This started to produce pairings
of functions where communication needs to happen. These were written as
arrows with a capital ‘C’ to denote a communication dependency. The six
step algorithm then became four function communication dependency pairs,
see Figure 18.

After some discussions which included time scales, firm production fre-
quency and overlap, it was decided that the whole labour market model
would act completely every day. This allowed one function dependency
graph to describe the total labour market algorithm. This was written up
in XMML as a model description, see Appendix C.

October 1, 2007 Page 44/71

Workpackage 1, Deliverable 1.1

| Pax L,
e S e —— - e
;'l-'fl---"t"r'l'" |"|'.':.|I =

Seads ; BN | Stad NACHaL e T

T
- —

]
|
|
I

. el 50 o4
arvipd B aid 1. Ll e btk 2 =
W)

I .'_-';::r"“" T PP TEaE 5 = no. sF ‘!{'}r _L'h .:._1;'.'
| e YRR T
afte v s

Figure 17: Blackboard diagrams describing discussions on the labour market
model

1 2 3 4
Firm: Household: Firm: Household:
read vacancies send applications send job offers send job acceptance
N A N N
C C C C

Household: Firm: Household: Firm:
read vacancies read applications read job offers read job acceptance

Figure 18: Function dependency of the labour market day by day

October 1, 2007 Page 45/71

Workpackage 1, Deliverable 1.1

Market_Research_read_request_for_market_data | hylpFirm_request_high_wag
(0 lines) (0 lines)

\<lntemal> T(message>

Market_Research_send_market_data_hyp| Eurostat_read_send_high_wa|
(0 lines) (0 lines)

<message> <message>

Firm_calc_randd_laboul
(0 lines)

internal>

Firm_calc_randd_vacancigs
(0 lines)

internal>

Firm_send_job_vacancigs
(6 lines)

message>
Household_read_job_vacancies
(2 lines)

Household_rank_job_vacancigs
(2 lines)

<internal>

Household_send_job_applications
(2 lines)

Firm_rank_applications
(2 lines)

internal>

Firm_send_job_offers
(2 lines)

Household_rank_job_offers
(2 lines)

internal>

Household_send_job_response
(2 lines)

Firmiupdateiwageioffﬁr

2 lines) (2 lines)

Fmessag»

Household_read_application_rejection
(2 lines)

"<mterna\>

Household_update_wage_reservation
(2 lines)

Firmﬁsendiapp\icationJejchor’S

Figure 19: Function dependency graph of the labour market

October 1, 2007 Page 46/71

Workpackage 1, Deliverable 1.1

Firm_request_high_wage Firm_request_market_data_hyp
(0 lines) (0 lines)
<depends on high_wage_request> I<depends on market_data_request>

Eurostat_read_send_high_wage | Market_Research_read_request_for_market_data_hyp_|se
(0 lines) (0 lines)

‘wpends on high M:pends on market_data>

Firm_calc_redundencies_vacancies_and_s‘end

(O lines)

@epends on redunde}@epends on vacancies>

Household_read_job_redundency_vacancies_send_apis
(O lines)

Kdepends on job_application>

Firm_read_job_applications_send_offer_or_rejection

(O lines)
VWnds on job_offer>

L Household_read_job_offers_send_response
(O lines)

Mg on internal> ‘kdepends on job_acceptan

Household_read_application_rejection_update_wagervation Firm_read_job_responses_update_wage_dffe
(O lines) (O lines)

<depends on job_rejection,

Figure 20: Updated function dependency graph of the labour market

7.1.1 Agents

The agent types used, their behaviour, and their forecast number in the
labour market are:

e Household - looking for a job - 1000

e Firm - looking to fill vacancies - 100

e Market Research - sends market data to firms - 1

e Eurostat - sends high wage information to firms - 1

Which corresponds to one region or NUTS-2 regions.

7.1.2 Function Layout

All internal function dependencies have been removed where they are the
only dependency and the functions merged. This creates a more compact
and easier to read model. It also saves memory space as creating lists (of
vacancies, application, and job offers), ranking, and deleting them can all be
done locally in the same function without saving the list to agent memory.

October 1, 2007 Page 47/71

Workpackage 1, Deliverable 1.1

Firm_request_high_wage | | Firm_request_market_data_hyp
(40 1ines) (40 1ines)

Eurostat_read_send_high_wage | | Market_Research_read_request_for_market_data_hyp_send
(40 1ines) (40 Tines)

Firm_calc_redundencies_vacancies_and_send
(40 1ines)

Household_read_job_redundency_vacancies_send_applicationg
(40 1ines)

Firm_read_job_applications_send_offer_or_rejection
(40 1ines)

Household_read_job_offers_send_response
(40 1ines)

Household_read_application_rejection_update_wage_reservation | Firm_read_job_responses_update_wage_offer
(40 1ines) (40 1ines)

Figure 21: The communication sycnronisation layers of the labour market
model

7.1.3 Implementation

The labour market revolves around the monthly cycle of firms calculating
their monthly production. On the day of month they calculate this they
ask the eurostat agent and market research agent for additional information
then calculate the number of employees they need. If they have too many
employees they send redundancy messages out, and if they have too few
they send out vacancy messages.

7.1.4 Results and Conclusions

The labour market model provides a test bed to research:

e Ways to design models
— Function dependencies
e Ways to implement models
— Cluster internal functions

e Ways to run models efficiently

Running models efficiently includes calculating when best to run functions
and where to place communication synchronisation points between func-
tions. Figure 21 lists the functions on rows with communication points as
diagonal lines. This is the order the functions will be run in with commu-
nication handled at the red lines. The main efficiency to be gained is to
have as few amount of communication points as possible, as this is the main
bottle neck in parallel (the starting up of communication between nodes).

As part of handling messages efficiently the message board will automat-
ically organise messages in relation to the filters agents use to read messages,
for example with a distance metric.

October 1, 2007 Page 48/71

Workpackage 1, Deliverable 1.1

7.2 The Asset Market Model

Also discussed at the Bielefeld work meeting, the asset market is still under
construction. Figures 23 and 24 depict the block diagrams of the market

and how it functions®.

7.2.1 Agent Population

Household Agent. Invests in assets.
Firm Agent. Issues assets (stocks and bonds).

Financial Advisor Agent. Gives advice to households on the past per-
formance of a set of asset allocation rules. It holds a database of such
rules in its internal memory.

Asset Management Company. A firm that manages Exchange Traded
Funds (ETFs) and/or hedge funds. Like other firms, the Financial Ad-
visor distributes its profits to its shareholders. There can be multiple
Financial Advisors.

Clearinghouse Agent. Reads limit_order_messages. Computes transac-
tion prices.

LimitOrderBook Agent. Reads limit_order_messages. Computes trans-
action prices.

7.2.2 Internal Dependencies

A few internal dependencies in the household and the firm agent have been
identified. These have been depicted in the dotty diagram in Figure 22.

7.2.3 Implementation

The asset market works on a monthly basis as depicted in Figure 23. The
diagram shows that it starts on the first day of the month and continues
normal procedure for the rest of the month. The first column, however,
depicts how the asset market connects to the markets outside its own realm,
like the ‘Consumption Goods Market (CGM)’ and external agents as the
banks and the firms. A few implementation issues were encountered as
listed below:

Problem of Days. Figure 23 shows how some of the functions of the asset
market have to be run on one day on the month with the rest of the
functions running as normal.

This gives rise to the discussion on how long is one simulation
supposed to be depicted for. To make it default, USFD has proposed
to make the length of one simulation to depict one day.

®These figures are a result of the discussion at the Bielefeld work meeting and converted
into figurative form by Sander van der Hoog from the GREQAM unit.

October 1, 2007 Page 49/71

Workpackage 1, Deliverable 1.1

There is another issue on how the date of the day will be checked
as some of the functions are dependent on which day of the month it is.
Discussions with the STFC unit have led to a few conclusions of either
including a date check in every function description or the presence
of a date agent allowing some functions to be executed. Further tests
will be done to find the most efficient manner of doing this.

Internal and message dependencies. Figure 24 depicts the function de-
pendencies to be of two types - internal or message. As previously
discussed on communication dependencies, internal represents depen-
dency on functions within the agent. Thus some of these functions
can be combined into one. Combining functions allows possibly more
efficient use of memory and a more readable function dependency
graphs, but removes the possibility of parallel execution (by future
use of threads) and the ease of testing smaller functions. The external
message dependency , is when the agent depends on another agent for
data. Therefore these would be the synchronisation point at which
prior to it all agents would have finished working and wait to move
into the next block. The importance of reducing the layers to message
dependencies reduces the synchronisation points to be encountered.
this reduces computational overhead in the model.

7.2.4 Current Work

The model has already been designed and implemented in MATLAB by the
Genoa unit in collaboration with the GREQAM unit and is going to be
converted into C language for implementation using the framework.

October 1, 2007 Page 50/71

L00g ‘T 190120

1L/16 98eg

HouseholdCalculateGrossIncome
(2 lines)

depends on internal>

HouseholdCalculateMonthlyTaxes
(2 lines)

depends on internal>

HouseholdCalculateNetincome
(2 lines)

depends on internal>

(2 lines)

HouseholdCalculate TotalBudget
(2 lines)

HouseholdCalculateAssetWeall

<depends on intern:

HouseholdCalculateCashOnHands
(2 lines)

<depends on internal>

‘h

depends on internal>

HouseholdCalculateConsumptionBuddet
(2 lines)

HouseholdUpdateAssetPortfoli
(2 lines)

<depends on internal>

depends on internal>

(2 lines)

HouseholdCalculateFinancialNeedsMontle ‘

HouseholdCalculateFinancialNeedsDajly
(2 lines)

<depends on intern

depends on internal>

HouseholdEntryDecisio

(2 lines)
A

<depends on internal>

HouseholdCalculateAssetBudg

t
(2 lines) ra

<depends on internakdepends on internal>

<depends on internal>

FirmCalculateIncomeStatement

(72 lines)

<depends on internal>

FirmCalculateFinancialPolicies

(2 lines)

<depends on internakdepends on internal>\ <depends on internal>

FirmCalculateFirmStockOrder;
(2 lines)

FirmCalculateFirmBondOrder:

FirmApplyForBankLoan
(2 lines)

(2 lines) f

<depends on internal

HouseholdCalculateFirmBondOrdefs
(2 lines)

HousehoIdCalculateGovernmentBondOrdfrs

(2 lines) (2 lines)

<depends on internal>

HouseholdCaIcuIateFirmStockOrders ‘ FirmUpdateOutstandingAsse‘s

(2 lines)

ClearingHouseComputeTransactions
(2 lines)

LimitOrderBookComputeTransactions
(2 lines)

Figure 22: Dotty diagram of household and firms.

T'T [qeIdAT[a(T ‘T o8espedsIopn

L00g ‘T 190120

1L/2G 9Seg

Determined outside of the asset market

Firm
Payout function

At start of Month
Day 1

(output from Labor Market)

Household
calc consumption_leftover_budget

Firm sends
sends wage payment msg

“|sends dividend payment msg

sends bond coupon payment msg

(updates internal memory variable)

Consumption_budget

It}Message}
1

Household

reads wage payments
reads dividend payments
reads bond payments

Aklnternal)

Household
calc gross_income
calc monthly_taxes

> calc net_income

calc total_budget

calc asset_wealth_value
calc cash_on_hands

A;\Internal}

Household

calc consumption budget

4\Interna|}

Household

Every Day

Inte

calc financial needs monthly|

Y

rnal}

Household
entry_decision

A\Internal}

Household
calc asset budget

/Nlnternal}
1

Household
portfolio_selection

A(Internal}
1
Household

calc firm_bond_orders
calc gov_bond_orders
calc firm_stock_orders

4\(Internal)

Household

send firm_bond_order_msg
send gov_bond_order_msg
send firm_stock_order_msg

It\ Message}

Clearinghouse/Limit-order-book
read firm_bond_order_msg
read gov_bond_order_msg
read firm_stock_order_msg

{Intg

A
»

rnal}

Clearinghouse/Limit-order-book
calc firm_bond_transactions
calc gov_bond_transactions
calc firm_stock_transactions

A

j{Internal}
1

Clearinghouse/Limit-order-book

send firm_bond_transaction_msg
send gov_bond_transaction_msg
send firm_stock_transaction_msg

AMessage}

Household

read firm_bond_transaction_msg
read gov_bond_transaction_msg
read firm_stock_transaction_msg

It\(lnternal}
1

Household
calc update asset_portfolio
calc financial_needs_daily

A{Internal}
1

Household
send update_savings_account

I{Message}
1

<
(input to CGM) -
Household P
sends update_savings_account_msg |~
I?\{ Message}
1
Bank
read update_savings_account
Bank
Savings accounts updating <&
(input for Asset Market)
Figure 23

Bank
read update_savings_account

: Function dependency graph for the Financial Management Role of the Household.

T'T [qeIdAT[a(T ‘T o8espedsIopn

L00g ‘T 190120

1L/€6 98eg

Step 1. Update performance

Household
send rule_performance

I
|
I { Message}

Financial Advisor
read rule_performance

{Internal}

Y

Financial Advisor
update rule_performance

Step 2. Send information, select rule

Financial Advisor
send all_rule_performances

{Internal}

I
: {Message}

Y

Household
read all_rule_performances

kinternal}
|

Y

Household
select_asset_allocation_rule

I{Internal}
|

Y

Household
read rule_details

Step 3. Apply the selected rule

- ->

Household

calc target_asset_portfolio

calc firm_stock_limit_orders
calc firm_bond_limit_orders
calc gov_bond limit_orders

{Internal}

{Internal}

v

Household

send firm_stock_limit_orders
send firm_bond_limit_orders
send gov_bond_limit_orders

I
I{I\/tessage}

y

Asset market agent

read firm_stock_limit_orders
read firm_bond_limit_orders
read gov_bond_limit_orders

Figure 24: Function dependency graph for the Portfolio Selection Algorithm of the Household.

T'T [qeIdAT[a(T ‘T o8espedsIopn

Workpackage 1, Deliverable 1.1

A XMML Schema

<?xml version="1.0"7>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="xmachine_agent_model">
<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="date" type="xs:string"/>
<xs:element name="notes" type="xs:string"/>

<xs:element name="environment" minOccurs="0" max0Occurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="constants" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="var" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="type" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="functions" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="file" type="xs:string" minOccurs="1">
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="datatypes" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="datatype" minOccurs="1">
<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

October 1, 2007 Page 54/71

Workpackage 1, Deliverable 1.1

<xs:element name="desc" type="xs:string"/>

<xs:element name="var" minOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="type" type="xs:string"/>
<xs:element name="name" type='"xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="xmachine" minOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="memory">
<xs:complexType>
<xs:sequence>

<xs:element name="var" minOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="type" type="xs:string"/>
<xs:element name="name" type="xs:string"/>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="functions" minOccurs="0" maxOccurs="1">
<xs:complexType>

<xs: sequence>

<xs:element name="function" minOccurs="1">

October 1, 2007 Page 55/71

Workpackage 1, Deliverable 1.1

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name='"depends" minOccurs="0">
<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name='"messages'>
<xs:complexType>
<xs:sequence>

<xs:element name="message" minOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="var'" minOccurs="1">
<xs:complexType>

<xs:sequence>

<xs:element name="type" type="xs:string"/>
<xs:element name="name" type="xs:string"/>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>

</xs:complexType>
</xs:element>

October 1, 2007

Page 56/71

Workpackage 1, Deliverable 1.1

<xs:element name="iteration_end_code" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name='"code" type='"xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

October 1, 2007 Page 57/71

Workpackage 1, Deliverable 1.1

B CQ@TS Model

<?xml version="1.0" encoding="IS0-8859-1"7>

<xmachine_agent_model>

<name>C@S Bis Model</name>

<author>Simon Coakley and Mariam Kiran</author>
<date>011006</date>

<!-—x*xx*xEnvironment values and functions *kxkk*kx—->
<environment>

<functions>

<file>functions.c</file>

</functions>

</environment>

<I-—sxxx¥**% X-machine Agent - Firm *xkkkk—->

<xmachine>

<name>Firm</name>

<h-- Variables -->
<!-- All variables used by Firm are declared here
to allocate them in memory -->

<memory>

<var><type>int</type><name>id</name></var>
<var><type>double</type><name>value</name></var>
<var><type>double</type><name>a</name></var>
<var><type>double</type><name>productivity</name></var>
<var><type>double</type><name>profits</name></var>
<var><type>double</type><name>f</name></var>
<var><type>double</type><name>production</name></var>
<var><type>int</type><name>goodsproduced</name></var>
<var><type>int</type><name>stock</name></var>
<var><type>int</type><name>sold</name></var>
<var><type>int</type><name>labour</name></var>
<var><type>int</type><name>numberofworkers</name></var>
<var><type>double</type><name>price</name></var>
<var><type>double</type><name>oldprice</name></var>
<var><type>double</type><name>priceinflation</name></var>
<var><type>double</type><name>sprice</name></var>
<var><type>double</type><name>lprice</name></var>
<var><type>int_array</type><name>workerid</name></var>
<var><type>double_array</type><name>workerwage</name></var>
<var><type>double</type><name>avewage</name></var>
<var><type>int_array</type><name>mall_id</name></var>
<var><type>int</type><name>mall_vacancy</name></var>
<var><type>int</type><name>mall_goods</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>
</memory>

<t-- Defining functions -=>

<functions>

<function><name>Firm_1</name>
<depends>

October 1, 2007 Page 58/71

Workpackage 1, Deliverable 1.1

<name>Spread_awareness</name><type>mall_location</type>
</depends>
</function>

<function><name>Firm_3</name>

<depends>
<name>Job_market</name><type>employed</type>
</depends>

</function>

<function><name>Firm_4</name>

<depends>
<name>Goods_market</name><type>firm_stock</type>
</depends>

</function>

</functions>
</xmachine>
<l——sokkdorkkdokkk End of Agent — Firm sskskokokskokorskokokskokok——>

<!-—xxxxx%x* X-machine Agent - Person xxxxxkxxxxxx-—->
<xmachine>

<name>Person</name>

<t-- Variables for the Person -=>
<memory>

<var><type>int</type><name>id</name></var>
<var><type>double</type><name>savings</name></var>
<var><type>double</type><name>wage</name></var>
<var><type>int</type><name>firmid</name></var>
<var><type>int</type><name>mall_application</name></var>
<var><type>int</type><name>mall_shopping</name></var>
<var><type>int_array</type><name>mall_id</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>
</memory>

<l-- Defining functions -->
<functions>

<function><name>Person_1</name>

<depends>
<name>Firm_1</name><type>priceinflation</type>
</depends>

<depends>
<name>Spread_awareness</name><type>mall_location</type>
</depends>

</function>

<function><name>Person_2</name>

<depends>
<name>Job_market</name><type>employed</type>
</depends>

</function>

<function><name>Person_4</name>

October 1, 2007

Page 59/71

Workpackage 1, Deliverable 1.1

<depends>
<name>Goods_market</name><type>consumer_spent</type>
</depends>

</function>

</functions>
</xmachine>
<I—-xxxxxx End of Agent - Person s xkikkokkxkskkk——>

<I——sxxx¥k%x*k X-machine Agent - Mall *xkkkkkkkk——>

<xmachine>

<name>Mall</name>

<t-- Variables for the Mall -=>

<memory>

<var><type>int</type><name>id</name></var>
<var><type>int_array</type><name>app_person_ids</name></var>
<var><type>double_array</type><name>app_person_wages</name></var>
<var><type>int_array</type><name>sell_firm_ids</name></var>
<var><type>int_array</type><name>sell_firm_stocks</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>

</memory>

<t-- Defining functions -=>

<functions>

<function><name>Spread_awareness</name></function>

<function><name>Job_market</name>
<depends><name>Firm_1</name><type>vacancy</type></depends>
<depends><name>Person_1</name><type>application</type></depends>
</function>

<function><name>Goods_market</name>

<depends>
<name>Firm_3</name><type>firm_stock_price</type>
</depends>

<depends>
<name>Person_2</name><type>consumer_spending</type>
</depends>

</function>

</functions>
</xmachine>
<!-—xxxxxx*%x*x End of Agent - Mall okok ok ok ok okokokokokokok——>

<!--xx Messages being posted by the agents to communicate **-->
<messages>

<!-- Message posted to record the price inflation -->
<message>

<name>mall_location</name>

<note>Mall location message</note>
<var><type>int</type><name>mall_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>

October 1, 2007 Page 60/71

Workpackage 1, Deliverable 1.1

<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>

</message>

<!-- Message posted to record the price inflation -->
<message>

<name>priceinflation</name>

<note>This message is posted by the firm when it calculates the next price
of the goods. The message is read by the workers to help calculate their
new wages because they consider the price inflation to do this</note>
<var><type>int</type><name>firm_id</name></var>
<var><type>double</type><name>priceinflation</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>

</message>

<l-- Message for applying to firm -->

<message>

<name>application</name>

<note>This message is posted by the worker that it is applying to this
firm for work with what wage he wants and where he worked before</note>
<var><type>int</type><name>person_id</name></var>
<var><type>double</type><name>person_wage</name></var>
<var><type>int</type><name>mall_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>

</message>

<I-- Message for firm vacancies -->

<message>

<name>vacancy</name>

<note>Message for firm vacancies</note>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>vacancies</name></var>
<var><type>int</type><name>mall_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>

</message>

<!-- Message that the person has been employed -=>
<message>

<name>employed</name>

<note>This message is sent out by the firms to let the workers
know who are employed and by whom</note>
<var><type>int</type><name>person_id</name></var>
<var><type>double</type><name>person_wage</name></var>
<var><type>int</type><name>firm_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>

</message>

October 1, 2007 Page 61/71

Workpackage 1, Deliverable 1.1

<!-- Message for consumer spending -->
<message>

<name>consumer_spending</name>

<note>Message to Mall outlet indicating how much to spend</note>
<var><type>int</type><name>person_id</name></var>
<var><type>double</type><name>spending</name></var>
<var><type>int</type><name>mall_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<!-- Message for consumer spent -->

<message>

<name>consumer_spent</name>

<note>Message from Mall outlet indicating how much has been spent</note>
<var><type>int</type><name>person_id</name></var>
<var><type>double</type><name>spent</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<!-- Message for stock of the firm -->

<message>

<name>firm_stock</name>

<note>This message lets the people know how much stock the firm
they are buying from has left.</note>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>stock</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<!-- Message of stock and price from firm to mall -->
<message>

<name>firm_stock_price</name>

<note>This message lets the people know how much stock the firm
they are buying from has left.</note>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>stock</name></var>
<var><type>double</type><name>price</name></var>
<var><type>int</type><name>mall_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

</messages>

<I--xxx*x End of Messages *¥¥kxx-->

</xmachine_agent_model>

October 1, 2007 Page 62/71

Workpackage 1, Deliverable 1.1

C Labour Market Model

<?xml version="1.0" encoding="IS0-8859-1"7>

<xmachine_agent_model>
<name>Labour Market</name>
<author>Eurace</author>
<date>290507</date>

<!-—xxxx*x*x Environment values and functions *¥¥kkk*x—->
<environment>

<functions>

<file>Household_functions.c</file>
<file>Firm_functions.c</file>
<file>Eurostat_functions.c</file>
<file>Market_Research_functions.c</file>
<file>my_library_functions.c</file>

</functions>

<datatype>

<name>employee</name>

<desc>Used to hold employee information in firms</desc>
<var><type>int</type><name>id</name></var>
<var><type>int</type><name>wage</name></var>
</datatype>

<datatype>

<name>stock</name>

<desc>Used by households to hold stock information</desc>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>price</name></var>
</datatype>

<datatype>

<name>vacancy</name>

<desc>Used by households to hold vacancy information</desc>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>wage</name></var>
</datatype>

<datatype>

<name>job_application</name>

<desc>Used by firms to hold job applications</desc>
<var><type>int</type><name>worker_id</name></var>
<var><type>int</type><name>wage</name></var>
</datatype>

<datatype>

<name>job_offer</name>

<desc>Used by households and firms to hold job offers</desc>
<var><type>int</type><name>id</name></var>
<var><type>int</type><name>wage</name></var>
</datatype>

</environment>

<!--xxxxx%x X-machine Agent - Firm skkkkkkkkkkkkkx—->
<xmachine>

<name>Firm</name>

<t-- Variables -->

October 1, 2007 Page 63/71

Workpackage 1, Deliverable 1.1

<!-- A1l variables used by Firm are declared here to
allocate them in memory -->
<memory>

<var><type>int</type><name>id</name></var>
<var><type>employee_array</type><name>employees</name></var>
<var><type>int</type><name>wage_offer</name></var>
<var><type>int</type><name>technology</name></var>
<var><type>int</type><name>no_employees</name></var>
<var><type>int</type><name>vacancies</name></var>
<var><type>int</type><name>day_of_month_to_act</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>

</memory>

<l-- Defining functions -->

<functions>

<function>
<name>Firm_read_job_applications_send_offer_or_rejection</name>
<depends>
<name>Household_read_job_redundency_vacancies_send_applications</name>
<type>job_application</type></depends>

</function>

<function>
<name>Firm_read_job_responses_update_wage_offer</name>
<depends>
<name>Household_read_job_offers_send_response</name>
<type>job_acceptance</type></depends>

</function>

<function><name>Firm_request_market_data_hyp</name>
</function>

<function><name>Firm_calc_redundencies_vacancies_and_send</name>
<depends>
<name>Market_Research_read_request_for_market_data_hyp_send</name>
<type>market_data</type></depends>

<depends>
<name>Eurostat_read_send_high_wage</name><type>high_wage</type>
</depends>

</function>

<function><name>Firm_request_high_wage</name>
</function>

</functions>
</xmachine>
<l-—sxxkkkkkkx End of Agent - Firm sckskskskskskskskskskskskskskskskkskoskskokokk——>

<!--xxxxxx X-machine Agent - Household sk ——>
<xmachine>

<name>Household</name>

<l-- Variables for the Household -—>

<memory>

October 1, 2007 Page 64/71

Workpackage 1, Deliverable 1.1

<var><type>int</type><name>id</name></var>
<var><type>int</type><name>wage</name></var>
<var><type>int</type><name>wage_reservation</name></var>
<var><type>int</type><name>skills</name></var>
<var><type>int</type><name>employee_firm_id</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>
</memory>

<l-- Defining functions -->
<functions>

<function>
<name>Household_read_job_redundency_vacancies_send_applications</name>
<depends>

<name>Firm_calc_redundencies_vacancies_and_send</name>
<type>vacancies</type></depends>

<depends>

<name>Firm_calc_redundencies_vacancies_and_send</name>
<type>redundency</type></depends>

</function>

<function>

<name>Household_read_job_offers_send_response</name>

<depends>
<name>Firm_read_job_applications_send_offer_or_rejection</name>
<type>job_offer</type></depends>

</function>

<function>
<name>Household_read_application_rejection_update_wage_reservation</name>
<depends>

<name>Firm_read_job_applications_send_offer_or_rejection</name>
<type>job_rejection</type></depends>

<depends>

<name>Household_read_job_offers_send_response</name>
<type>internal</type></depends>

</function>

</functions>
</xmachine>
<!-——xkkk End of Agent - Household sksksksokskokkokskokokokskookokoksdokok ok ok ook — = >

<xmachine>

<name>Market_Research</name>

<l-- Variables for the Market_Research -=>
<memory>

<var><type>int</type><name>id</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>
</memory>

<I-- Defining functions -->
<functions>

<function>

October 1, 2007 Page 65/71

Workpackage 1, Deliverable 1.1

<name>Market_Research_read_request_for_market_data_hyp_send</name>
<depends><name>Firm_request_market_data_hyp</name>
<type>market_data_request</type></depends>

</function>

</functions>
</xmachine>

<xmachine>

<name>Eurostat</name>

<memory>
<var><type>int</type><name>id</name></var>
<var><type>double</type><name>posx</name></var>
<var><type>double</type><name>posy</name></var>
</memory>

<t-- Defining functions -=>
<functions>

<function><name>Eurostat_read_send_high_wage</name>
<depends><name>Firm_request_high_wage</name>
<type>high_wage_request</type></depends>
</function>

</functions>
</xmachine>

<!--x Messages being posted by the agents to communicate *-->
<messages>

<message>

<name>high_wage_request</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>high_wage</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>high_wage</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>market_data_request</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>

October 1, 2007 Page 66/71

Workpackage 1, Deliverable 1.1

<var><type>double</type><name>z</name></var>
</message>

<message>

<name>market_data</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>market_data</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>vacancies</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>firm_vacancies</name></var>
<var><type>int</type><name>firm_wage</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>job_application</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>worker_id</name></var>
<var><type>int</type><name>wage</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>job_offer</name>
<var><type>int</type><name>worker_id</name></var>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>wage</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>job_acceptance</name>
<var><type>int</type><name>firm_id</name></var>
<var><type>int</type><name>worker_id</name></var>
<var><type>int</type><name>wage</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>

October 1, 2007

Page 67/71

Workpackage 1, Deliverable 1.1

<var><type>double</type><name>z</name></var>
</message>

<message>

<name>job_rejection</name>
<var><type>int</type><name>worker_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

<message>

<name>redundency</name>
<var><type>int</type><name>worker_id</name></var>
<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

</messages>
<!--xxx%x End of Messages ***xx-->

</xmachine_agent_model>

October 1, 2007

Page 68/71

Workpackage 1, Deliverable 1.1

References

[1]

T Balanescu, AJ Cowling, M Georgescu, M Holcombe, and C Vertan. Com-
municating stream X-machines are no more than X-machines. Journal of Uni-
versal Computer Science, 5(9):494-507, September 1999.

J Barnard, J Whitworth, and M Woodward. Communicating x-machines.
Information and Software Technology, 38(6):401-407, June 1996.

B. Bauer, J.P. Muller, and J. Odell. Agent uml: a formalism for specifying
multiagent software systems. International Journal on Software Engineering
and Knowledge Engineering (IJSEKE), 1(2), 2001.

B. Bauer, J. Odell, and H. Parunak. Extending uml for agents. In G. Wagner,
Y. Lesperance, and E. Yu, editors, Proceedings of the Agent-Oriented Infor-
mation Systems Workshop (AOIS), Austin, pages 3 — 17, 2000.

M. Catalano, F. Clementi, Domenico Delli Gatti, C. Di Guilmi, Edoardo
Gaffeo, Mauro Gallegati, Gianfranco Giulioni, M. Napoletano, Antonio
Palestrini, and A. Russo. The CQ@S project. EURACE Working Paper, Septem-
ber 22 2006.

Simon Coakley. Formal Software Architecture for Agent-Based Modelling in
Biology. PhD thesis, Department of Computer Science, University of Sheffield,
Sheffield, UK, 2007.

Samuel Eilenberg. Automata, languages and machines. Vol. A. Academic
Press, London, 1974.

Mike Holcombe. Towards a formal description of intracellular biochemical
organisation. Technical Report CS-86-1, Dept of Computer Science, University
of Sheffield, Sheffield, UK, 1986.

Bernardo A. Huberman and Natalie S. Glance. Evolutionary games and com-
puter simulations. Proceedings of the National Academy of Sciences, 90:7716
- 7718, August 1993.

M. Huget. Agent uml class diagrams revisited. In B. Bauer, K. Fischer,
J. Muller, and B. Rumpe, editors, Proceedings of Agent Technology and Soft-
ware Engineering (AgeS), Erfurt, Germany, 2002.

Adrian Jackson. Single sided communication on hpcx. Technical Report
HPCxTRO0305, University of Edinburgh, October 2003.

Gilbert Laycock. The Theory and Practice of Specification Based Software
Testing. PhD thesis, Dept of Computer Science, University of Sheffield,
Sheffield, UK, 1993.

R.J. Pryor, D. Marozas, M. Allen, O. Paananen, K. Hiebert-Dodd, and R.K.
Reinert. Modeling requirements for simulating the effects of extreme acts of
terrorism: A white paper. Report SAND98-2289, SANDIA National Labora-
tories, 1998.

Leigh Tesfatsion. Agent based computational economics, July 2007. <Online:
http://www.econ.iastate.edu/tesfatsi/ace.htm>.

Bielefeld University. Capital, consumption goods, and labour markets in eu-
race. EURACE Working paper WP5.1, April 2006.

Sander van der Hoog and Christophe Deissenberg. Modelling requirements for
EURACE. EURACE Working paper WP2.1, January 2007.

October 1, 2007 Page 69/71

Workpackage 1, Deliverable 1.1

[17] Sander van der Hoog and Christophe Deissenberg. Modelling specifications for
EURACE. EURACE Working paper WP2.2, January 2007.

[18] Boris Vaysburg, Luay H. Tahat, and Bogdan Korel. Dependence analysis
in reduction of requirement based test suites. In ISSTA ’02: Proceedings of
the 2002 ACM SIGSOF'T international symposium on Software testing and
analysis, pages 107-111, New York, NY, USA, 2002. ACM Press.

[19] G. Weisbuch, A. Kirman, and A. Herreiner. Market organization and trading
relationships. The Economic Journal, 110:411 — 436, 2000.

October 1, 2007 Page 70/71

Workpackage 1, Deliverable 1.1

Glossary

Eurostat : The statistical arm of the European Commission.
HPC : High Performance Computer — parallel supercomputer or computer cluster.

Node : Any single computer connected to a network. Supercomputer clusters are
many up of many nodes.

NUTS-2 : Nomenclature of Territorial Units for Statistics — Used by Eurostat for
E.C. regional statistics, level 2 being the region level.

UML : Unified Modelling Language — a standard notation and modelling tech-
nique for modelling software systems.

XML : Extensible Markup Language — a simple and very flexible text format de-
signed for information exchange that encodes data with meaningful structure
and semantics.

October 1, 2007 Page 71/71

