
Project no.
035086

Project acronym
EURACE

Project title
An Agent-Based software platform for European economic policy design with

heterogeneous interacting agents: new insights from a bottom up approach to

economic modelling and simulation

Instrument: STREP

Thematic Priority: IST FET PROACTIVE INITIATIVE “SIMULATING EMERGENT PROP-
ERTIES IN COMPLEX SYSTEMS

D5.3: Software module for the agent based models of goods,

labour and credit markets

Due date of deliverable:
31/08/2008

Actual submission date:

Start date of project: September 1st 2006 Duration: 36 months

Organisation name of lead contractor for this deliverable
University of Sheffield - USFD

Revision 1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Contents

1 Introduction 1

2 General Model Implementation 1

3 Goods and Labour Market Implementation 2

3.1 Description . 2
3.1.1 Firm Agent in the Labour and Goods Market 2
3.1.2 Household Agent in the Labour and Goods Market 5

3.2 Messages being used . 7

4 Credit Market Implementation 7

4.1 Description . 7
4.1.1 Firm Agent in the Credit Market . 7
4.1.2 Bank Agent in the Credit Market . 11

4.2 Messages being Used . 13
4.3 Implementation Results . 13

5 Testing 14

5.1 Unit Testing . 14
5.2 Integration Testing . 15

i

Abstract

This report presents the deliverable D5.3 accounting for the software descriptions of the
models for the markets - goods and labour and credit markets. This deliverable acts as part
of the work package 5 which comprises of agent based computational models of goods, labour
and credit markets required for the project EURACE. Also included are sections on general
model implementation, as a lead up to the economic models, and model testing strategies,
to make sure the models are valid.

ii

1 Introduction

This document contains definitions of the labour and goods market isolated model and the
credit market isolated model. The definitions are not how the models work but how they are
designed using extended state machines (X-machines) and how this fits the implementation using
FLAME. Section 2 describes the model definition changes of adding states between functions
rather than giving order to functions via dependencies. Section 5 describes strategies for testing
models that include the current use of unit testing (testing individual functions) and future ideas
for integration testing (testing groups of functions). Also shown are the use of tools to create
test sets for integration testing and finding assertions on agent variables after simulations have
been executed.

2 General Model Implementation

Models are constructed from agents that have functions. These functions must be executed in a
correct order for the model to run correctly. Formerly this order was defined in the model defi-
nition XMML by dependencies between functions. These dependencies could be either internal,
within individual agents, or communication, dependent on messages from other agents. This
was enough information to be able to order functions and plan communication synchronisation
points to work in parallel.

The economic models eventually started to run only certain functions at certain times, for
example, weekly or monthly. Because each function was still being executed this required a
condition at the start of every function and soon became a hindrance. Even though a series
of functions used the same time series they all had to include the same condition. This was
also true of other conditions, for example only households that were unemployed need execute
functions involved with the labour market.

This was solved by defining the model in the XMML as a state machine. Where states are
defined before and after functions. Each state can have many incoming functions and many
outgoing functions. Only the unique start state has no incoming functions, and end states have
no outgoing functions. This then allows branches of functions where the condition for all the
functions can be defined at the start of the branch. An example of this is shown by the similar
models in Figures 1 and 2.

The model can now be recognised as a state machine but with the restriction that once a state
has been entered by an agent it cannot reenter the same state. This provides synchronisation
of agents in parallel during execution. Also input to functions are sets of inputs (messages)
which can be empty. This is the level of detail required by FLAME to plan the communication
synchronisation in parallel.

Each function can then be defined by the parameters as shown in Table 1, where Mpre is the
pre-condition of the memory and Mpost is the post-condition of the memory.

Current State Input Mpre Function Mpost Output Next State

Table 1: Function parameters

In XMML this is currently written as below where Mpre is defined as condition and Mpost is
written as source code within a function with the same name as the function name.

<function>

<name>Function_name</name>

<description>A description of the function</description>

<currentState>current_state</currentState>

1

<nextState>next_state</nextState>

<condition>condition</condition>

<inputs>inputs</inputs>

<outputs>outputs</outputs>

</function>

3 Goods and Labour Market Implementation

The goods and labour market is based on the model presented by the Bielefeld unit. Detailed
description of the model can be found in D5.1. Here is a brief overview of the implementation
of the model.

3.1 Description

In order to parse the model and test it for results the labour and goods market has to be
integrated with various models of the credit, government and financial management markets.
Here we concentrate on the essence of the individual functions involved with the labour and
goods market only. The two main agents involved in this process are namely - Firms and
Households. The state graph in Figure 3 describes how these functions are interacting with each
other.

3.1.1 Firm Agent in the Labour and Goods Market

See Table 2.

2

condition

F1

F2

condition

F3

condition

F4

Figure 1: Dependency graph model

F1

F2

F3

F4

condition

F2

Figure 2: State graph model

3

Table 2: State Transition Table of the Firm involved in Labour Market.

Function Name Current State Next State Condition Inputs Outputs
Firm calculate specific
skills and wage offer

Start Firm Labour
Role

011

Firm send vacancies 011 0
a.no employees LT
a.employees needed

vacancies

Firm send redundancies 011 03c
a.no employees GT
a.employees needed

firing

Firm idle 011 03c
a.no employees EQ
a.employees needed

Firm read job applications
send job offer or rejection

03 04 job application
job offer, applica-
tion rejection

Firm read job responses 04 05a job acceptance

Firm read job quitting 05a 05b quitting

Firm read job quitting 00b 09c quitting

Firm read job quitting 03c 03d quitting

Firm start labour market 03d 06
a.no employees LT
a.employees needed

Firm finish labour market
first round

03d 09a
a.no employees LT
a.employees needed

Firm finish labour market
first round

05b 09a
a.no employees EQ
a.employees needed

Firm update wage offer 05b 06
a.no employees LT
a.employees needed

Firm send vacancies 2 06 07 vacancies2
Firm read job applications
send job offer or rejection
2

07 08 job application2
job offer2, appli-
cation rejection2

Firm read job responses 2 08 09a job acceptance2

Firm read job quitting 2 09a 09b quitting2

Firm read job quitting 2 09c Start Firm Seller Role quitting2

Firm update wage offer 2 09b 10
a.no employees LT
a.employees needed

Firm idle 09b 10
a.no employees LT
a.employees needed

Firm compute mean wage
specific skills

10 End Firm Labour Role

4

The description of the functions is stated below:

Firm send vacancies. If additional workers are needed the firm sends vacancies messages
especially the different wage offers for the different general skill groups.

Firm send redundancies. If the firm wants to decrease the workforce it sends redundancies.

Firm idle. Firm does nothing.

Firm read job applications send job offer or rejection. Firm reads the application, ranks
the applicants according to their general and specific skills and sends as many job offers
to the first ranked applicants as the firm has vacancies to fill. The other applicants are
refused.

Firm read job responses. The firm reads the responses to their job offers and updates the
number of employees and the number of vacancies.

Firm read job quitting. The firm reads quitting messages and updates the number of em-
ployees and the number of vacancies.

Firm start labour market. Dummy function if a firm has to enter the Labour Market in the
second round after receiving quitting.

Firm update wage offer. The firm increases the wage offer if there are vacancies left.

Firm send vacancies 2. If additional workers are needed the firm sends vacancies messages
especially the different wage offers for the different general skill groups.

Firm read job applications send job offer or rejection 2. Firm reads the application, ranks
the applicants according to their general and specific skills and sends as many job offers
to the first ranked applicants as the firm has vacancies to fill. The other applicants are
refused.

Firm read job responses 2. The firm reads the responses to their job offers and updates the
number of employees and the number of vacancies.

Firm read job quitting 2. The firm reads quitting messages and updates the number of em-
ployees and the number of vacancies.

Firm update wage offer 2. The firm increases the wage offer if there are vacancies left.

3.1.2 Household Agent in the Labour and Goods Market

See Table 3.

5

Table 3: State Transition Table of the Household involved in Labour Market.

Function Name Current State Next State Condition Inputs Outputs
Household read firing
messages

Start Household
Labour Role

01d
a.employee firm
id NEQ -1

firing

Household idle 01d 01a
a.employee firm
id EQ -1

Household idle
Start Household
Labour Role

01a
a.employee firm
id EQ -1

Household UNEMPLOYED
read job vacancies and
send applications

01a 01 vacancies job application

Household on the job
search decision

01d 01b
a.employee firm
id NEQ -1

Household OTJS read
job vacancies and send
applications

01b 01
a.on the job search
EQ 1

vacancies job application

Household idle 01b 06
a.on the job search
NEQ 1

Household read job offers
send response

01 02 job offer
quitting,
job acceptance

Household finish labour
market

02 06

(a.employee firm id
NEQ -1) AND
(a.on the job search
NEQ 1)

Household read application
rejection update wage
reservation

02 03
a.employee firm id
EQ -1

application
rejection

Household OTJS read
job vacancies and send
applications 2

02 04
a.on the job search
EQ 1

vacancies2 job application2

Household UNEMPLOYED
read job vacancies and
send applications 2

03 04 vacancies2 job application2

Household read job offers
send response 2

04 05 job offer2
job acceptance2,
quitting2

Household read application
rejection update wage
reservation 2

05 06
a.employee firm id
EQ -1

application
rejection2

Household idle 05 06
a.employee firm id
NEQ -1

6

Household read firing messages. The household checks whether is is fired or not.

Household idle. Household does nothing.

Household UNEMPLOYED read job vacancies and send applications. Household reads
vacancies messages and sends applications.

Household on the job search decision. Household decides whether to search on the job or
not.

Household OTJS read job vacancies and send applications. Household searches on the
job. Reads vacancies messages and sends applications.

Household read job offers send response. Household reads the job offers and ranks them
according to the wage offer.

Household read application rejection update wage reservation 2. Household reads the
application rejections and decreases the reservation wage.

3.2 Messages being used

See Table 4.

4 Credit Market Implementation

This model was adapted from the proposed model of the credit market by the Ancona Unit.
Here we present a description of how the model was implemented.

4.1 Description

The credit market involves the interaction of the credit function with the financial management
functions of the Firm and Bank agent. The state graph in Figure 4 shows the flow of activity
in the model.

4.1.1 Firm Agent in the Credit Market

See Table 5.

7

Table 4: Messages involved in the labour and goods market implementation.

Name Variables being sent Description

vacancies
firm id, region id,
firm vacancies, skill group,
firm wage offer

Send by firms. Includes the
id, the region id the number of
vacancies and the wage offer
for the according general skill
level.

vacancies2
firm id, region id,
firm vacancies, skill group,
firm wage offer

Send by firms. Includes the
id, the region id the number of
vacancies and the wage offer
for the according general skill
level.

firing firm id, worker id
Send by firms. Includes the
id and the id of the dismissed
employee.

job application
worker id, firm id, region id,
general skill, specific skill

Send by households to apply
for a job. Includes the id,
firm id, region id the general
as well as the specific skills.

job application2
worker id, firm id, region id,
general skill, specific skill

Send by households to apply
for a job. Includes the id,
firm id, region id the general
as well as the specific skills.

job offer
firm id,worker id, region id,
wage offer

Send by firms to make a job
offer for a household. Includes
the id, worker id and the cor-
responding wage offer.

job offer2
firm id,worker id, region id,
wage offer

Send by firms to make a job
offer for a household. Includes
the id, worker id and the cor-
responding wage offer.

job acceptance
worker id, firm id, region id,
general skill, specific skill

Send by households to accept
the job offer. Includes the id,
firm id, region id, the general
as well as the specific skills.

job acceptance2
worker id, firm id, region id,
general skill, specific skill

Send by households to accept
the job offer. Includes the id,
firm id, region id, the general
as well as the specific skills.

application rejection firm id, worker id
Send by firms. Includes the id
and the id of the refused ap-
plicant.

application rejection2 firm id, worker id
Send by firms. Includes the id
and the id of the refused ap-
plicant.

quitting worker id, firm id
Send by households to quit
the current job. Includes the
id, firm id.

quitting2 worker id, firm id
Send by households to quit
the current job. Includes the
id, firm id.

8

layer 0

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

layer 10

layer 11

layer 12

layer 13

layer 14

layer 15

layer 16

layer 17

layer 18

layer 19

layer 20

layer 21

layer 22

layer 23

layer 24

layer 25

layer 26

layer 27

layer 28

layer 29

layer 30

layer 31

layer 32

layer 33

layer 34

layer 35

layer 36

layer 37

layer 38

layer 39

layer 40

layer 41

layer 42

layer 43

layer 44

layer 45

layer 46

layer 47

layer 48

layer 49

layer 50

layer 51

layer 52

layer 53

layer 54

layer 55

layer 56

layer 57

layer 58

layer 59

layer 60

layer 61 end_Firm

15

Firm_send_payments_to_bank

Start_Firm_Macro_Data

Firm_receive_data

Periodicity: monthly
Phase: 1

Firm_idle

not (Periodicity: monthly
Phase: 1)

start_Firm

Firm_idle

not (Periodicity: yearly
Phase: 1)

Firm_read_tax_rates

Periodicity: yearly
Phase: 1

10

Firm_compute_mean_wage_specific_skills

09b

Firm_update_wage_offer_2

a->no_employees < a->employees_needed

Firm_idle

not (a->no_employees < a->employees_needed)

08

Firm_read_job_responses_2

07

Firm_read_job_applications_send_job_offer_or_rejection_2

09a

Firm_read_job_quitting_2

06

Firm_send_vacancies_2

03d

Firm_start_labour_market

a->no_employees < a->employees_needed

Firm_finish_labour_market_first_round

not (a->no_employees < a->employees_needed)09c

Firm_read_job_quitting_2

05b

Firm_finish_labour_market_first_round

a->no_employees == a->employees_needed

Firm_update_wage_offer

a->no_employees < a->employees_needed

05a

Firm_read_job_quitting

04

Firm_read_job_responses

03c

Firm_read_job_quitting

03

Firm_read_job_applications_send_job_offer_or_rejection

011

Firm_send_vacancies

a->no_employees < a->employees_needed

Firm_send_redundancies

a->no_employees > a->employees_needed

Firm_idle

a->no_employees == a->employees_needed

Start_Firm_Labour_Role

Firm_calculate_specific_skills_and_wage_offer

004

Firm_compute_balance_sheet

003

Firm_compute_total_financial_payments

002

Firm_compute_dividends

001

Firm_compute_income_statement

21

Firm_read_loan_acceptance

Start_Firm_Credit_Role

Firm_apply_for_loans

a->external_financial_needs > 0.0

Firm_idle

not (a->external_financial_needs > 0.0)

14

Firm_send_data_to_Eurostat

Periodicity: monthly
Phase: 0

Firm_idle

not (Periodicity: monthly
Phase: 0)

005

Firm_update_specific_skills_of_workers

13b

Firm_compute_financial_payments

13a

Firm_compute_sales_statistics

Periodicity: monthly
Phase: a->day_of_month_to_act

Firm_idle

not (Periodicity: monthly
Phase: a->day_of_month_to_act)

Start_Firm_Seller_Role

Firm_calc_revenue

12

Firm_send_goods_to_mall

11

Firm_calc_pay_costs

11b

Firm_execute_production

11a

Firm_receive_capital_goods

End_Firm_Labour_Role

Firm_send_capital_demand

Firm_Finish_Finacial_Management

Firm_execute_financial_payments

End_Firm_Credit_Role

Firm_calc_production_quantity_2

not (a->financial_resources_for_production >= a->planned_production_costs)

Firm_idle

a->financial_resources_for_production >= a->planned_production_costs

02

Firm_compute_total_liquidity_needs

00b

Firm_read_job_quitting

01

Firm_calc_input_demands

00

Firm_calc_production_quantity

Periodicity: monthly
Phase: a->day_of_month_to_act

Firm_set_quantities_zero

not (Periodicity: monthly
Phase: a->day_of_month_to_act)

end_Household

Start_Household_Tax_Data

Household_receive_data

Periodicity: monthly
Phase: 1

Household_idle

not (Periodicity: monthly
Phase: 1)

start_Household

Household_idle

not (Periodicity: yearly
Phase: 1)

Household_read_tax_rates

Periodicity: yearly
Phase: 1

05

Household_read_application_rejection_update_wage_reservation_2

a->employee_firm_id == -1

Household_idle

a->employee_firm_id != -1

04

Household_read_job_offers_send_response_2

03

Household_UNEMPLOYED_read_job_vacancies_and_send_applications_2

02

Household_finish_labour_market

a->employee_firm_id != -1 &&
a->on_the_job_search != 1

Household_read_application_rejection_update_wage_reservation

a->employee_firm_id == -1

Household_OTJS_read_job_vacancies_and_send_applications_2

a->on_the_job_search == 1

01b

Household_OTJS_read_job_vacancies_and_send_applications

a->on_the_job_search == 1

Household_idle

a->on_the_job_search != 1

01

Household_read_job_offers_send_response

01a

Household_UNEMPLOYED_read_job_vacancies_and_send_applications

01d

Household_idle

a->employee_firm_id == -1

Household_on_the_job_search_decision

a->employee_firm_id != -1

Start_Household_Labour_Role

Household_read_firing_messages

a->employee_firm_id != -1

Household_idle

a->employee_firm_id == -1

12

Household_receive_goods_read_rationing_2

14

Household_handle_leftover_budget

11

Household_set_values_zero

a->rationed != 1

Household_rank_and_buy_goods_2

a->rationed == 1

10

Household_receive_goods_read_rationing

15

Household_send_data_to_Eurostat

Periodicity: monthly
Phase: 0

Household_idle

not (Periodicity: monthly
Phase: 0)

08b

Household_determine_consumption_budget

06d

Household_receive_unemployment_benefits

08

Household_pay_taxes

07

Household_update_specific_skills

06c

Household_receive_wage

a->employee_firm_id != -1

Household_send_unemployment_notification_to_Government

a->employee_firm_id == -1

09

Household_idle

not (Periodicity: weekly
Phase: a->day_of_week_to_act)

Household_rank_and_buy_goods_1

Periodicity: weekly
Phase: a->day_of_week_to_act

06b

Household_idle

not (Periodicity: monthly
Phase: a->day_of_month_receive_income)

Household_idle

Periodicity: monthly
Phase: a->day_of_month_receive_income

06

Household_receive_dividends

end_Mall

05

Mall_pay_firm

04

Mall_update_mall_stocks_sales_rationing_2

03

Mall_update_mall_stocks_sales_rationing_1

02

Mall_send_quality_price_info_1

start_Mall

Mall_update_mall_stock

start_IGFirm

IGFirm_idle

not (Periodicity: yearly
Phase: 1)

IGFirm_read_tax_rates

Periodicity: yearly
Phase: 1

end_IGFirm

04b

IGFirm_dividend_payment

Periodicity: monthly
Phase: a->day_of_month_to_act

04

IGFirm_pay_taxes

Periodicity: monthly
Phase: a->day_of_month_to_act

IGFirm_idle

not (Periodicity: monthly
Phase: a->day_of_month_to_act)

03

IGFirm_receive_payment

02

IGFirm_send_capital_good

01

IGFirm_send_quality_price_info

Start_IGFirm_Productivity

IGFirm_update_productivity_price

Periodicity: monthly
Phase: a->day_of_month_to_act

IGFirm_idle

not (Periodicity: monthly
Phase: a->day_of_month_to_act)

end_Eurostat

01

Eurostat_idle

not (Periodicity: monthly
Phase: 0)

Eurostat_calculate_data

Periodicity: monthly
Phase: 0

Start_Eurostat_Firm_Data

Eurostat_send_data

Periodicity: monthly
Phase: 1

Eurostat_idle

not (Periodicity: monthly
Phase: 1)

Start_Eurostat_Tax_Data

Eurostat_idle

not (Periodicity: yearly
Phase: 1)

Eurostat_read_tax_rates

Periodicity: yearly
Phase: 1

start_Eurostat

Eurostat_Initialization

Periodicity: iteration
Phase: 1

Eurostat_idle

not (Periodicity: iteration
Phase: 1)

end_BANK

Start_Bank

Bank_read_loan_request_send_acceptance

03

Bank_account_update_deposits

02

Bank_read_debt_installment_payments

01

Bank_read_interest_payments

end_Government

02

Government_send_account_update

01

Government_read_tax_payment

00

Government_send_unemployment_benefit_payment

Government_idle

not (Periodicity: monthly
Phase: 0)

start_Government

Government_idle

not (Periodicity: yearly
Phase: 0)

Government_send_tax_rates

Periodicity: yearly
Phase: 0

capital_good_request

wage_payment

pay_capital_goods

update_mall_stock

loan_request

dividend_per_share

interest_payment

debt_installment_payment

tax_payment

vacancies vacancies

firing

job_offer

application_rejection

vacancies2 vacancies2

job_offer2

application_rejection2

firm_send_data

bank_account_update

specific_skill_update

unemployment_notification

tax_payment

consumption_request_1

consumption_request_2

bank_account_update

job_application job_application

job_acceptance

quitting

quittingquitting

job_application2 job_application2

job_acceptance2

quitting2

quitting2

household_send_data

quality_price_info_1

accepted_consumption_1

quality_price_info_2

accepted_consumption_2

sales

productivity

capital_good_delivery

tax_payment

dividend_per_share

eurostat_send_specific_skills

loan_acceptance

government_tax_rates government_tax_ratesgovernment_tax_ratesgovernment_tax_rates

unemployment_benefit

bank_account_update

Figure 3: State graph of the Labour Market Model.

9

Table 5: Functions being performed by the Firm involved in Credit Market.

Function Name State From State to Condition on Function Inputs Outputs

Firm ask loan
Start Firm
Credit Role

Firm Credit 02
a.external
financial needs
GT 0.0

loan request

Firm get loan Firm Credit 02
Firm End
Credit Role

loan conditions (
a.id EQ m.firm id

loan acceptance

10

4.1.2 Bank Agent in the Credit Market

See Table 6.

11

Table 6: Functions being performed by the Bank involved in Credit Market.

Function Name State From State to Condition on Function Inputs Outputs
Bank decide
credit
conditions

Bank start
credit market
role

Bank 02
loan request (a.id
EQ m.bank id)

loan conditions

Bank give loan Bank 02 Bank 03

loan acceptance
(a.id EQ m.bank
id)

Bank receive
instalment

Bank 03 Bank 04
instalment (a.id
EQ m.bank id)
bankruptcy (a.id
EQ m.bank id)

Bank account
update deposits

Bank 04 Bank 05

bank account
update (a.id EQ
m.bank id)

central bank
account update

Bank accounting Bank 05 end Bank cycle
monthly (a.day of
month to act)

Bank idle Bank 05 end Bank cycle
not (monthly (a.day of
month to act))

12

4.2 Messages being Used

See Table 7.

Table 7: Messages involved in the credit market implementation.

Name Variables being sent Description

loan request
firm id, bank id, eq-
uity, total debt, exter-
nal financial needs

Message added by firm to
demand credit with bank id,
with financial info of applying
firm.

loan conditions

firm id, bank id, pro-
posed interest rate,
amount offered credit,
value at risk

Message added by bank to of-
fer credit, contains the inter-
est rate, the amount of offered
credit, and the value at risk.

loan acceptance
bank id,
credit amount taken,
loan total var

Message added by firm to ac-
cept a loan with bank id, for
the amount credit taken and
VAR. The bank does not need
to know the firm id.

instalment
bank id, instalment amount,
interest amount,
var per instalment

Message added by firm pays
instalment and interest to the
bank.

bankruptcy
bank id, bad debt,
credit refunded, residual var

Message added by firm to
bank to signal bankruptcy.

BCE return bce debt, id

4.3 Implementation Results

The implementation of the agents described above was then simulated to produce results which
could later then be tested for verification of the model. The results and technical details of the
credit market have also been discussed in D5.2.

The simulation consists of fifty iterations, that is 50 days. The network is composted by 100
firms and 10 banks. Households are replaced by the Dummy Agent.

Every month firms accomplish two main actions: they ask for loans and pay debt install-
ments, inclusive of interests. The demand of credit occurs once per month. All firms, for sake
of simplicity, are activated in the first day of each month. Interests are payed back every day
after the loan has been taken out. The more relevant initial conditions of firms have been set
as follows: equity = 100, total debt=0, cash = 100 and total assets=0.

As far as banks are concerned, they have the task to lend money and fix interest rates
whenever required by firms. Then, banks collect interests and installments payed back by firms
increasing, so, their equity and cash. At the end of the month, banks with positive profits will
pay taxes and dividends.
Relevant bank variables have the following initial values: cash=1000, total credit=0, equity=1000,
debts versus BCE=0, γt=0.2, γt−1=0.4, BCE’s interest 2%, α=0.8 and πt−1 = πt−2=500.

Figure (5) shows the average bank equity along the simulation time. In the first twenty days it
increases thanks to interest payments. In the first day of the second month (21st iteration), banks
pay taxes and, so, the equity shrinks. Then, since banks grant new loans and, consequently,
new interests are payed, the everage equity increases again and so on. It is worthwhile to note
that in the second month equity grows less because banks are short of liquidity and lend less

13

money. This is because we have not considered deposits from households (which are created
in another EURACE module); additional liquidity, disposable for new loans, comes only from
firms’ payment of installments relative to previously contracted debts.

In figure (6) we can see the average bank cash. After the first period it decreases abruptly
because of loan demands occurring in the same time. In the following days, banks receive
installments and can build up their liquidity again. The same reasoning for equity applies: we
do not have deposits, so cash can only re-establish slowly and is immediately absorbed by new
credit demands: that is why the average cash shows along time only small increases.

5 Testing

Testing agent-based models is difficult because the interaction of agents in a simulation is dy-
namic and possibly random which produces complex patterns and behaviours. Traditional soft-
ware testing strategies which use the divide and conquer approach can be applied but will
typically miss some undesirable possibilities due the emergent nature of agent-based systems.

Envisioned possibilities can be easily tested but when a model diverges from its intended
path the relationship between variables could show a bug or even an unexpected solution. The
invariants to a simulation, the relationship of variables that remain true, can be pre-written or
detected during simulation runs and provide a dynamic way of testing agent-based models.

For example during a simulation run assertions can be placed on variables to make sure they
fall within a certain range. If ranges are not known before hand they can be detected and the
results viewed by the model creator for correctness.

The testing of individual parts of a system can still achieved by unit testing but testing the
interaction of these parts, integration testing, can use techniques designed for state machines,
and the use of invariant detectors.

5.1 Unit Testing

Unit testing is the testing of individual modules of a piece of software, in the case of models
these are the individual agent functions. Each function has an accompanying unit test function
that sets the initial agent memory and any input, calls the function, and assets that the new
agent memory and outputs are of the expected values.

FLAME provides procedures to help with unit testing:

• initialise unit testing() – initialises FLAME for unit testing agent functions, required at
the start of a testing suite.

• unittest init agentname agent() – initialises the agent memory that will used in testing

• The agent memory is then updated

• Messages are sent that will be the input to the function to be tested

• The function to be tested is called

• Assertions are tested against the resulting agent memory and any output

• unittest free agentname agent() – the agent memory is deleted

• free messages() – any messages used are deleted

• clean up() – FLAME is finalised and ready to end.

Unit testing treats the function to be tested as a black box, inputs are given and only the
outputs are tested, as shown in Figure 7.

14

5.2 Integration Testing

Integration testing is the testing of combinations of individual modules of a piece of software.
Modules that have been unit tested are aggregated into groups and each group is tested as a
whole system. Generating the groups requires a specific coverage of testing combinations, a test
set.

The W-method proposed by T. Chow [1] provides a complete test set of sequences through a
state machine. Because models have been defined as state machines this technique can be used.

An implementation of the W-method is available through a program called statechum [4, 3]
(http://statechum.sourceforge.net/) which accepts as input graphml
(http://graphml.graphdrawing.org/), an XML standard for describing graphs. Each agent as
a separate state machine when fed into the W-method will produce a test set with a specified
coverage. An example test set for the Firm agent in the labour and goods markets is as follows:

#1 [Firm_idle, Firm_receive_data, Firm_calc_production_quantity]

#2 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_idle, Firm_execute_financial_payments,

Firm_calculate_specific_skills_and_wage_offer, Firm_idle, Firm_read_job_quitting,

Firm_finish_labour_market_first_round, Firm_read_job_quitting_2, Firm_idle,

Firm_compute_mean_wage_specific_skills, Firm_send_capital_demand,

Firm_receive_capital_goods, Firm_execute_production, Firm_calc_pay_costs,

Firm_send_goods_to_mall, Firm_calc_revenue]

#3 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_idle, Firm_execute_financial_payments,

Firm_calculate_specific_skills_and_wage_offer, Firm_idle, Firm_read_job_quitting,

Firm_finish_labour_market_first_round, Firm_read_job_quitting_2,

Firm_update_wage_offer_2, Firm_compute_mean_wage_specific_skills]

#4 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_idle, Firm_execute_financial_payments,

Firm_calculate_specific_skills_and_wage_offer, Firm_idle, Firm_read_job_quitting,

Firm_start_labour_market, Firm_send_vacancies_2,

Firm_read_job_applications_send_job_offer_or_rejection_2, Firm_read_job_responses_2,

Firm_read_job_quitting_2, Firm_idle]

#5 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_idle, Firm_execute_financial_payments,

Firm_calculate_specific_skills_and_wage_offer, Firm_send_vacancies,

Firm_read_job_applications_send_job_offer_or_rejection, Firm_read_job_responses,

Firm_read_job_quitting, Firm_finish_labour_market_first_round, Firm_read_job_quitting_2,

Firm_idle]

#6 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_idle, Firm_execute_financial_payments,

Firm_calculate_specific_skills_and_wage_offer, Firm_send_vacancies,

Firm_read_job_applications_send_job_offer_or_rejection, Firm_read_job_responses,

Firm_read_job_quitting, Firm_update_wage_offer, Firm_send_vacancies_2]

#7 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_apply_for_loans, Firm_read_loan_acceptance,

Firm_idle, Firm_execute_financial_payments]

#8 [Firm_idle, Firm_idle, Firm_calc_production_quantity, Firm_calc_input_demands,

Firm_compute_total_liquidity_needs, Firm_apply_for_loans, Firm_read_loan_acceptance,

Firm_calc_production_quantity_2, Firm_execute_financial_payments]

#9 [Firm_idle, Firm_idle, Firm_set_quantities_zero, Firm_read_job_quitting,

Firm_read_job_quitting_2, Firm_calc_revenue, Firm_idle, Firm_send_data_to_Eurostat,

Firm_send_payments_to_bank]

#10 [Firm_idle, Firm_idle, Firm_set_quantities_zero, Firm_read_job_quitting,

Firm_read_job_quitting_2, Firm_calc_revenue, Firm_compute_sales_statistics,

Firm_compute_financial_payments, Firm_compute_income_statement, Firm_compute_dividends,

15

Firm_compute_total_financial_payments, Firm_compute_balance_sheet,

Firm_update_specific_skills_of_workers, Firm_idle]

#11 [Firm_idle, Firm_idle, Firm_set_quantities_zero, Firm_read_job_quitting,

Firm_read_job_quitting_2, Firm_calc_revenue, Firm_compute_sales_statistics,

Firm_compute_financial_payments, Firm_compute_income_statement, Firm_compute_dividends,

Firm_compute_total_financial_payments, Firm_compute_balance_sheet,

Firm_update_specific_skills_of_workers, Firm_send_data_to_Eurostat]

#12 [Firm_read_tax_rates, Firm_receive_data]

#13 [Firm_read_tax_rates, Firm_idle]

Anticipating the results of individual functions is straight forward. They are coded for their
specific purpose with required results and are therefore easy to test. With the introduction of
communication and interchange of information, anticipating the results from a group of functions
is not so easy, this being one of the reasons for using agent-based modelling. The consequence of
not being able to predict the results is that first the results have to be created and then tested
for what was roughly expected.

One way to analyse the output of groups of functions is to use an invariant detector. A
program of this type reports any likely invariants, properties that hold at certain points. This
could then be analysed by the modeller and possibly used as assertions in future test runs.

The Daikon program is an invariant detector [2] (http://groups.csail.mit.edu/pag/daikon/).
After feeding Daikon the results from fifty iterations from the labour and goods market model,
the invariants of each agents variables are produced. The examples given below show invariants
of variables where: they keep a certain value; are one of a limited list of values; or are large or
smaller than a certain value. These are only three types of invariants but Daikon can be told to
search for many more, for example the relationship between two or more variables.

===

Bank:::OBJECT

id == 1233

region_id == 2

gov_id == 1232

last_credit_id == 0

amount_credit_offer == 0.0

total_deposits one of { 0.0, 1808.8 }

total_loan_supply one of { 0.0, 1627.92 }

===

Eurostat:::OBJECT

id == 1236

region_id == 2

num_households == 0

unemployment_rate == 0.0

average_s_skill == 1.0

no_firms == 0

gdp == 0.0

===

Firm:::OBJECT

id >= 1

region_id one of { 1, 2 }

gov_id == 1232

day_of_month_to_act == 0

payment_account == 50.0

wage_offer == 1.0

average_g_skill == 0.0

ebit == 0.0

tax_rate_corporate == 0.25

16

earnings_per_share == 0.01

current_shares_outstanding == 1200

total_value_capital_stock == 200.0

planned_value_capital_stock == 2.0

bank_id == 1233

mean_specific_skills == 0.8

out_of_stock_costs one of { 0.0, 1.0 }

===

Government:::OBJECT

id == 1232

bank_id == 1233

payment_account == 100.0

tax_revenues == 0.0

unemployment_benefit_payment == 0.8

tax_rate_corporate == 0.25

num_unemployed == 0

===

Household:::OBJECT

region_id one of { 1, 2 }

gov_id == 1232

bank_id == 1233

day_of_month_to_act == 0

payment_account == 0.8

wage == 0.0

wage_reservation == 1.0

general_skill >= 1

number_applications == 15

last_labour_income == 0.0

employee_firm_id == -1

employer_region_id == 0

week_of_month one of { 3, 4 }

mall_completely_sold_out one of { 0, 1 }

day_of_week_to_act >= 0

tax_rate_hh_capital == 0.25

===

IGFirm:::OBJECT

id == 31

region_id == 2

gov_id == 1232

bank_id == 1233

day_of_month_to_act == 0

payment_account == 0.0

productivity == 1.0

capital_good_price == 100.0

tax_rate_corporate == 0.25

tax_payment == 0.0

outstanding_shares == 1200

===

Mall:::OBJECT

id one of { 1234, 1235 }

region_id one of { 1, 2 }

gov_id == 0

total_supply == 0.0

This technique can be utilised for tracking changes of variables between functions and not
just between iterations giving more testing coverage of groups of functions.

17

References

[1] TS Chow. Testing software design modeled by finite-state machines. IEEE Transactions on
Software Engineering, SE-4(3):178–187, March 1978.

[2] MD Ernst, JH Perkins, PJ Guo, S McCamant, C Pacheco, MS Tschantz, and C Xiao. The
Daikon system for dynamic detection of likely invariants. Science of Computer Programming,
69(1-3):35–45, December 2007.

[3] N Walkinshaw and K Bogdanov. Inferring finite-state models with temporal constraints.
23rd IEEE/ACM International Conference on Automated Software Engineering (ASE’08),
L’Aquila, Italy, 2008.

[4] N Walkinshaw, K Bogdanov, M Holcombe, and S Salahuddin. Reverse engineering state
machines by interactive grammar inference. 14th IEEE Working Conference on Reverse
Engineering (WCRE’07), Vancouver, Canada, October 2007.

18

layer 0

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

layer 10

layer 11

layer 12

layer 13

layer 14

layer 15

layer 16

layer 17

layer 18

Start_Firm_Labour_Role

Firm_financial_crisis_ok

Firm_execute_financial_payments_function

Firm_not_in_bankruptcy_state_now_check_financial_crisis

Firm_in_financial_crisis_function

a->financial_crisis_state == 1

Firm_idle

a->financial_crisis_state == 0

end_Firm_cycle

end_Firm_dies

Firm_generate_new_firm

0003

Firm_read_stock_transactions

02

Firm_compute_total_liquidity_needs

Firm_bankruptcy_checked

Firm_in_bankruptcy

a->bankruptcy_state == 1

Firm_not_in_bankruptcy

a->bankruptcy_state == 0

End_Firm_Financial_Role

Firm_idle

not (Periodicity: monthly
Phase: a->day_of_month_to_act)

Firm_check_financial_and_bankruptcy_state

Periodicity: monthly
Phase: a->day_of_month_to_act

004

Firm_compute_balance_sheet

003

Firm_compute_total_financial_payments

002

Firm_compute_dividends

001

Firm_compute_income_statement

f1

Firm_compute_financial_payments

Firm_End_Credit_Role

Firm_compute_and_send_stock_orders

a->external_financial_needs > 0.0

idle

not (a->external_financial_needs > 0.0)

Firm_Credit_02

Firm_get_loan

Start_Firm_Credit_Role

Firm_ask_loan

a->external_financial_needs > 0.0

idle

not (a->external_financial_needs > 0.0)

end_Bank_cycle

Bank_05

Bank_accounting

Periodicity: monthly
Phase: a->day_of_month_to_act

Bank_idle

not (Periodicity: monthly
Phase: a->day_of_month_to_act)

Bank_04

Bank_account_update_deposits

Bank_03

Bank_receive_installment

Bank_02

Bank_give_loan

Bank_start_credit_market_role

Bank_decide_credit_conditions

003

002

Function_read_send_bank_messages

001

Function_read_send_order_messages

loan_request

loan_acceptance

order

bankruptcy

installment dividend_per_share tax_payment

loan_conditions

current_mall_stock_info

order_status

bank_account_update

Figure 4: State graph of the Credit Market Model.

19

0 10 20 30 40 50

Time

1000

1002

1004

1006

1008

A
v
e
ra
g
e
 e
q
u
ty

Figure 5: Time series of average bank equity. Jumps occur when taxes are payed.

20

0

Time

100

1000

lo
g
 a
v
e
ra
g
e
 c
a
s
h

Figure 6: Time series of average bank liquidity supply.

Function
to test

inputs
inital

memory

assertions
on output

assertions on
post-function
memory

Figure 7: Unit testing

21

